Skip to main content
Log in

Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, organic photocatalyst under visible-light absorption has shown significant potential for solving environmental problems. However, it is still a great challenge for constructing a highly active organic photo-catalyst due to the low separation efficiency of photogenerated carriers. Herein, an effective and robust photocatalyst perylene-3,4,9,10-tetracarboxylic diamide/boron nitride quantum dots (PDI/BNQDs), consisting of self-assemble PDI with ππ stacking structure and BNQDs, has been constructed and researched under visible light irradiation. The PDI/BNQDs composite gradually increases organic pollutant photodegradation with the loading amount of BNQDs. With 10 mL of BNQDs solution added (PDI/BNQDs-10), the organic pollutant photodegradation performance reaches a maximum, about 6.16 times higher with methylene blue and 1.68 times higher with ciprofloxacin than that of pure PDI supra-molecular. The enhancement is attributed to improved separation of photogenerated carriers from self-assembled PDI by BNQDs due to their preeminent ability to extract holes. This work is significant for the supplement of PDI supramolecular composite materials. We believe that this photocatalytic design is capable of expanding organic semiconductors’ potential for their applications in photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang L, Zhang X, Yu X, Gao E, Shen Z, Zhang X, Ge S, Liu J, Gu Z J, Chen C. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Advanced Materials, 2019, 31(33): 190265

    Article  Google Scholar 

  2. Chen J, Li Y, Li J, Han J, Zhu G, Ren L. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater. Frontiers of Chemical Science and Engineering, 2022, 16(7): 1125–1138

    Article  CAS  Google Scholar 

  3. Peng C, Jia Z, Zhong Y, Ao W, Chen D, Wang R, Ding H, Wu X, Wang J, Du G. Preparation of Bi3.64Mo0.36O6.55 by reflux method and its application in photodegradation of organic pollution. Journal of Materials Science Materials in Electronics, 2021, 32(13): 17890–17900

    Article  CAS  Google Scholar 

  4. Zhong Y, He Z, Chen D, Hao D, Hao W. Enhancement of photocatalytic activity of Bi2MoO6 by fluorine substitution. Applied Surface Science, 2019, 467: 740–748

    Article  Google Scholar 

  5. Takeda H, Kamiyama H, Okamoto K, Irimajiri M, Mizutani T, Koike K, Sekine A, Ishitani O. Highly efficient and robust photocatalytic systems for CO2 reduction consisting of a Cu(I) photosensitizer and Mn(I) catalysts. Journal of the American Chemical Society, 2018, 140(49): 17241–17254

    Article  CAS  PubMed  Google Scholar 

  6. Miao H, Yang J, Wei Y, Li W, Zhu Y. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Applied Catalysis B: Environmental, 2018, 239: 61–67

    Article  CAS  Google Scholar 

  7. Hu D, Fu J, Chen S, Li J, Yang Q, Gao J, Tang H, Kan Z, Duan T, Lu S, Sun K, Xiao Z. Block copolymers as efficients cathode interlayer materials for organic solar cells. Frontiers of Chemical Science and Engineering, 2021, 15(3): 571–578

    Article  CAS  Google Scholar 

  8. Fang X, Shang Q, Wang Y, Jiao L, Yao T, Li Y, Zhang Q, Luo Y, Jiang H L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Advanced Materials, 2018, 30(7): 1705112

    Article  Google Scholar 

  9. Wang G, He C T, Huang R, Mao J, Wang D, Li Y. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. Journal of the American Chemical Society, 2020, 142(45): 19339–19345

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Liu H, Wu C, Zhang Z, Pan Q, Hu F, Wang R, Li P, Huang X, Li Z. Fully sp2-carbon conjugated two-dimensional covalent organic frameworks as artificial photosystem I with unprecedented efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Li D, Sun C, Yang S, Guan Y, He H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Applied Catalysis B: Environmental, 2014, 144: 885–892

    Article  CAS  Google Scholar 

  12. Liao G, Gong Y, Zhang L, Gao H, Yang G J, Fang B. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy & Environmental Science, 2019, 12(7): 2080–2147

    Article  CAS  Google Scholar 

  13. Li X B, Liu J Y, Huang J T, He C Z, Feng Z J, Chen Z, Wan L F, Deng F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Physico Chimica Sinica, 2021, 37(6): 2010030

    Google Scholar 

  14. Yang J, Miao H, Jing J, Zhu Y, Choi W. Photocatalytic activity enhancement of PDI supermolecular via ππ action and energy level adjusting with graphene quantum dots. Applied Catalysis B: Environmental, 2021, 281: 119547

    Article  CAS  Google Scholar 

  15. Fateeva A, Chater P A, Ireland C P, Tahir A A, Khimyak Y Z, Wiper P V, Darwent J R, Rosseinsky M J. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angewandte Chemie International Edition, 2021, 51(30): 7440–7444

    Article  Google Scholar 

  16. Rafiq M, Chen Z, Tang H, Hu Z, Zhang X, Xing Y, Li Y, Huang F. Water-alcohol-soluble hyperbranched polyelectrolytes and their application in polymer solar cells and photocatalysis. ACS Applied Polymer Materials, 2020, 2(1): 12–18

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhu Y, Chen X, Zhang H, Wang J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Advanced Materials, 2019, 31(7): 1806626

    Article  Google Scholar 

  18. Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, Samuel A P S, Kiebala D J, Wasielewski M R, Stupp S I. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nature Chemistry, 2014, 6(11): 964–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen P, Blaney L, Cagnetta G, Huang J, Wang B, Wang Y, Deng S, Yu G. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environmental Science & Technology, 2019, 53(3): 1564–1575

    Article  CAS  Google Scholar 

  20. Gao Q, Xu J, Wang Z, Zhu Y. Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n–n heterojunction via ππ interaction and interfacial charge separation. Applied Catalysis B: Environmental, 2020, 271: 118933

    Article  CAS  Google Scholar 

  21. Cheng W, Chen H, Ji C, Yang R, Yin M. A perylenediimide-based nanocarrier monitors curcumin release with an “off–on” fluorescence switch. Polymer Chemistry, 2019, 10(20): 2551–2558

    Article  CAS  Google Scholar 

  22. Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biology, 2019, 25: 101047

    Article  CAS  PubMed  Google Scholar 

  23. Jung T H, Yoo B, Wang L, Dodabalapur A, Jones B A, Facchetti A, Wasielewski M R, Marks T J. Nanoscale n-channel and ambipolar organic field-effect transistors. Applied Physics Letters, 2006, 88(18): 183102

    Article  Google Scholar 

  24. Cheng H, Huai J, Gao L, Li Z. Novel self-assembled phosphonic acids monolayers applied in N-channel perylene diimide (PDI) organic field effect transistors. Applied Surface Science, 2016, 378: 545–551

    Article  CAS  Google Scholar 

  25. Macedo A G, Christopholi L P, Gavim A E X, de Deus J F, Teridi M A M, Yusoff A B, da Silva W J. Perylene derivatives for solar cells and energy harvesting: a review of materials, challenges and advances. Journal of Materials Science Materials in Electronics, 2019, 30(17): 15803–15824

    Article  CAS  Google Scholar 

  26. Dayneko S V, Cieplechowicz E, Bhojgude S S, Van Humbeck J F, Pahlevani M, Welch G C. Improved performance of solution processed OLEDs using N-annulated perylene diimide emitters with bulky side-chains. Materials Advances, 2021, 2(3): 933–936

    Article  CAS  Google Scholar 

  27. Ma L, Qin D, Liu Y, Zhan X. n-Type organic light-emitting transistors with high mobility and improved air stability. Journal of Materials Chemistry C, 2018, 6(3): 535–540

    Article  CAS  Google Scholar 

  28. Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X, Meng X, Yuan Z, Tan L, Chen Y. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylene diimide. Advanced Energy Materials, 2019, 9(18): 1900198

    Article  Google Scholar 

  29. Kim Y O, Moon B J, Lee A, Kim J I, Lee S K, Lee Y S, Bae S, Hong B H, Jung Y C. A multifunctional tyrosine-immobilized PAH molecule as a universal cathode interlayer enables high-efficiency inverted polymer solar cells. Advanced Optical Materials, 2021, 9(21): 2101006

    Article  CAS  Google Scholar 

  30. Wang W, Li X, Deng F, Liu J, Gao X, Huang J, Xu J, Feng Z, Chen Z, Han L. Novel organic/inorganic PDI-urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chinese Chemical Letters, 2022, 33(12): 5200–5207

    Article  CAS  Google Scholar 

  31. Li X, Kang B, Dong F, Deng F, Han L, Gao X, Xu J, Hou X, Feng Z, Chen Z, Liu L, Huang J. BiOBr with oxygen vacancies capture 0D black phosphorus quantum dots for high efficient photocatalytic ofloxacin degradation. Applied Surface Science, 2022, 539: 153422

    Article  Google Scholar 

  32. Wei W, Wei Z, Liu D, Zhu Y. Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Applied Catalysis B: Environmental, 2018, 230: 49–57

    Article  CAS  Google Scholar 

  33. Han R, Liu F, Wang X, Huang M, Li W, Yamauchi Y, Sun X, Huang Z. Functionalised hexagonal boron nitride for energy conversion and storage. Journal of Materials Chemistry A, 2020, 8(29): 14384–14399

    Article  CAS  Google Scholar 

  34. Li H, Tay R Y, Tsang S H, Zhen X, Teo E H T. Controllable synthesis of highly luminescent boron nitride quantum dots. Small, 2015, 11(48): 6491–6499

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, Xiong W. Boron nitride quantum dots decorated ultrathin porous g-C3N4: intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 2019, 245: 87–99

    Article  CAS  Google Scholar 

  36. Guo Y, Nie Y, Liang Z, Peilin W, Ma Q. Ag3PO4 NP@MoS2 nanosheet enhanced F, S-doped BN quantum dot electrochemiluminescence biosensor for K-ras tumor gene detection. Talanta, 2021, 228: 122221

    Article  CAS  PubMed  Google Scholar 

  37. Huo B, Liu B, Chen T, Cui L, Xu G, Liu M, Liu J. One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir, 2017, 33(40): 10673–10678

    Article  CAS  PubMed  Google Scholar 

  38. Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy & Environmental Science, 2018, 11(9): 2581–2589

    Article  CAS  Google Scholar 

  39. Li C, Che H, Liu C, Che G, Charpentier P A, Xu W, Wang X, Liu L. Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunctiontowards enhancing photodegradation activity under visible light. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 669–681

    Article  CAS  Google Scholar 

  40. Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics, 2016, 10(4): 262–266

    Article  CAS  Google Scholar 

  41. Ding Y, He P, Li S, Chang B, Zhang S, Wang Z, Chen J, Yu J, Wu S, Zeng H, Tao L. Efficient full-color boron nitride quantum dots for thermostable flexible displays. ACS Nano, 2021, 15(9): 14610–14617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant No. 21978276), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2652019157, 2652019158, and 2652019159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daimei Chen or Zhong-Yong Yuan.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Peng, C., Jia, Z. et al. Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation. Front. Chem. Sci. Eng. 17, 1718–1727 (2023). https://doi.org/10.1007/s11705-023-2319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2319-7

Keywords

Navigation