Skip to main content
Log in

Synthesis of nanofluids composed of deep eutectic solvents and metal-modified MCM-41 particles as multifunctional promoters for fuel oil desulfurization

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Compared with traditional hydrodesulfurization, new nonhydrodesulfurization methods have the advantage of a high removal efficiency for thiophene compounds under mild conditions. However, independent nonhydrodesulfurization technologies are faced with their own shortcomings, such as limitations of the desulfurization performance and regeneration of materials. To overcome these limitations, four nanofluids were prepared by dispersing different metal-modified MCM-41 particles in deep eutectic solvent as multifunctional promoters to develop a comprehensive desulfurization method. Based on the excellent adsorbability and high catalytic activity of the dispersed particles and the outstanding extractability of deep eutectic solvent in nanofluids, a high sulfur removal of 99.33% was achieved for model oil under mild conditions in 15 min. The nanofluids also showed excellent reusability due to their high structural stability. In addition, NF@Cu/Al-MCM-41-2.5% exhibited the best desulfurization performance among the prepared nanofluids. This result was obtained because the introduction of Al ions increased the number of acid sites and defect sites to improve the catalytic activity and adsorbability, and the best affinity of Cu/Al-MCM-41 for the deep eutectic solvent favored the reaction mass transfer. This work opens the door to the development of a comprehensive nonhydrodesulfurization method based on the design of nanofluid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhao H, Baker G A. Oxidative desulfurization of fuels using ionic liquids: a review. Frontiers of Chemical Science and Engineering, 2015, 9(3): 262–279

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu F, Yu J, Qazi A B, Zhang L, Liu X K. Metal-based ionic liquids in oxidative desulfurization: a critical review. Environmental Science & Technology, 2021, 55(3): 1419–1435

    Article  CAS  Google Scholar 

  3. Butt H S, Lethesh K C, Fiksdahl A. Fuel oil desulfurization with dual functionalized imidazolium based ionic liquids. Separation and Purification Technology, 2020, 248: 116959

    Article  CAS  Google Scholar 

  4. Ye G, Gu Y, Zhou W, Xu W, Sun Y. Synthesis of defect-rich titanium terephthalate with the assistance of acetic acid for room-temperature oxidative desulfurization of fuel oil. ACS Catalysis, 2020, 10(3): 2384–2394

    Article  CAS  Google Scholar 

  5. Ullah S, Khan K, Farooq M U, Ahmad W, Naeem M, Subhan F, Yaseen M. Perspectives on advances in the catalytic desulfurization and denitrogenation of transportation fuel oils using graphitic carbon nitride and boron nitride. Energy & Fuels, 2022, 36(16): 8900–8924

    Article  CAS  Google Scholar 

  6. Wu P, Lu L, He J, Chen L, Chao Y, He M, Zhu F, Chu X, Li F, Zhu W. Hexagonal boron nitride: a metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy & Environment, 2020, 5(2): 166–172

    Article  Google Scholar 

  7. Yaseen M, Ullah S, Ahmad W, Subhan S, Subhan F. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils. Fuel, 2021, 284: 119102

    Article  CAS  Google Scholar 

  8. Abro R, Kiran N, Ahmed S, Muhammad A, Jatoi A S, Mazari S A, Salma U, Plechkova N V. Extractive desulfurization of fuel oils using deep eutectic solvents—a comprehensive review. Journal of Environmental Chemical Engineering, 2022, 10(3): 107369

    Article  CAS  Google Scholar 

  9. Wang H, Jibrin I, Zeng X. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite. Frontiers of Chemical Science and Engineering, 2020, 14(4): 546–560

    Article  CAS  Google Scholar 

  10. Saha B, Vedachalam S, Dalai A K. Review on recent advances in adsorptive desulfurization. Fuel Processing Technology, 2021, 214: 106685

    Article  CAS  Google Scholar 

  11. Rajendran A, Cui T Y, Fan H X, Yang Z F, Feng J, Li W Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. Journal of Materials Chemistry A, 2020, 8(5): 2246–2285

    Article  CAS  Google Scholar 

  12. Jiang W, An X, Xiao J, Yang Z, Liu J, Chen H, Li H, Zhu W, Li H, Dai S. Enhanced oxygen activation achieved by robust single chromium atom-derived catalysts in aerobic oxidative desulfurization. ACS Catalysis, 2022, 12(14): 8623–8631

    Article  CAS  Google Scholar 

  13. Li S W, Wang W, Zhao J S. Highly effective oxidative desulfurization with magnetic MOF supported W-MoO3 catalyst under oxygen as oxidant. Applied Catalysis B: Environmental, 2020, 277: 119224

    Article  CAS  Google Scholar 

  14. Gao Y, Lv Z, Gao R, Zhang G, Zheng Y, Zhao J. Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst. Journal of Hazardous Materials, 2018, 359: 258–265

    Article  CAS  PubMed  Google Scholar 

  15. Lim X B, Ong W J. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. Nanoscale Horizons, 2021, 6(8): 588–633

    Article  CAS  PubMed  Google Scholar 

  16. Mendiratta S, Ali A A A. Recent advances in functionalized mesoporous silica frameworks for efficient desulfurization of fuels. Nanomaterials, 2020, 10(6): 1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang L, Ji W, Mao M, Huang J N. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. Journal of Cleaner Production, 2020, 257: 120408

    Article  CAS  Google Scholar 

  18. Pordanjani A H, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management, 2019, 198: 111886

    Article  Google Scholar 

  19. Sajid M U, Ali H M. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable & Sustainable Energy Reviews, 2019, 103: 556–592

    Article  CAS  Google Scholar 

  20. Mahian O, Bellos E, Markides C N, Taylor R A, Alagumalai A, Yang L, Qin C, Lee B J, Ahmadi G, Safaei M R, Wongwises S. Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy, 2021, 86: 106069

    Article  CAS  Google Scholar 

  21. Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renewable Energy, 2018, 118: 527–535

    Article  CAS  Google Scholar 

  22. Liu X, Wang B, Lv X, Meng Q, Li M. Enhanced removal of hydrogen sulfide using novel nanofluid system composed of deep eutectic solvent and Cu nanoparticles. Journal of Hazardous Materials, 2021, 405: 124271

    Article  CAS  PubMed  Google Scholar 

  23. Pordanjani A H, Aghakhani S, Afrand M, Sharifpur M, Meyer J P, Xu H, Ali H M, Karimi N, Cheraghian G. Nanofluids: physical phenomena, applications in thermal systems and the environment effects—a critical review. Journal of Cleaner Production, 2021, 320: 128573

    Article  CAS  Google Scholar 

  24. Gong T, Huang Y, Qin L, Zhang W, Li J, Hui L, Feng H. Atomic layer deposited palladium nanoparticle catalysts supported on titanium dioxide modified MCM-41 for selective hydrogenation of acetylene. Applied Surface Science, 2019, 495: 143495

    Article  CAS  Google Scholar 

  25. Zhang X, Huang Y, Yang J, Gao H, Huang Y, Luo X, Liang Z, Tontiwachwuthikul P. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: advancement of amine regeneration using metal modified MCM-41. Chemical Engineering Journal, 2020, 383: 123077

    Article  CAS  Google Scholar 

  26. Lin R, Liang Z, Yang C, Shi W, Cui F, Zhao Z. Selective and enhanced adsorption of the monosubstituted benzenes on the Fe-modified MCM-41: contribution of the substituent groups. Chemosphere, 2019, 237: 124546

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Li X, Liu M, Li L. Effective catalytic ozonation for oxalic acid degradation with bimetallic Fe-Cu-MCM-41: operation parameters and mechanism. Journal of Chemical Technology and Biotechnology, 2017, 92(11): 2862–2869

    Article  CAS  Google Scholar 

  28. Dou S Y, Wang R. High-efficient utilization of gaseous oxidants in oxidative desulfurization based on sulfonated carbon materials. Fuel Processing Technology, 2022, 235: 107372

    Article  CAS  Google Scholar 

  29. Hansen B B, Spittle S, Chen B, Poe D, Zhang Y, Klein J M, Horton A, Adhikari L, Zelovich T, Doherty B W, Gurkan B, Maginn E J, Ragauskas A, Dadmun M, Zawodzinski T A, Baker G A, Tuckerman M E, Savinell R F, Sangoro J R. Deep eutectic solvents: a review of fundamentals and applications. Chemical Reviews, 2020, 121(3): 1232–1285

    Article  PubMed  Google Scholar 

  30. Chandran D, Khalid M, Walvekar R, Mubarak N M, Dharaskar S, Wong W Y, Gupta T C S M. Deep eutectic solvents for extraction-desulphurization: a review. Journal of Molecular Liquids, 2019, 275: 312–322

    Article  CAS  Google Scholar 

  31. Liu W, Li T, Yu G, Wang J, Zhou Z, Ren Z. One-pot oxidative desulfurization of fuels using dual-acidic deep eutectic solvents. Fuel, 2020, 265: 116967

    Article  CAS  Google Scholar 

  32. Jha D, Haider M B, Kumar R, Balathanigaimani M S. Extractive desulfurization of fuels using diglycol based deep eutectic solvents. Journal of Environmental Chemical Engineering, 2020, 8(5): 104182

    Article  CAS  Google Scholar 

  33. Dong X, Li M, Huang N, Geng X, Deng Y, Zhu X, Meng Q, Gao P, Liu X. Effect of nanoparticles on desulfurization/regeneration performance of deep eutectic solvent based nanofluid system. Separation and Purification Technology, 2022, 300: 121875

    Article  CAS  Google Scholar 

  34. Gao J, Yu W, Xie H, Mahian O. Graphene-based deep eutectic solvent nanofluids with high photothermal conversion and high-grade energy. Renewable Energy, 2022, 190: 935–944

    Article  CAS  Google Scholar 

  35. Mahmoudi J, Lotfollahi M N, Asl A H. Comparison of synthesized H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline with propylene. Journal of Industrial and Engineering Chemistry, 2015, 24: 113–120

    Article  CAS  Google Scholar 

  36. Kwak K Y, Kim M S, Lee D W, Cho Y H, Han J, Kwon T S, Lee K Y. Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: the effects of pore size and acidity. Fuel, 2014, 137: 230–236

    Article  CAS  Google Scholar 

  37. Zhao Y, Wang R. Deep desulfurization of diesel oil by ultrasound-assisted catalytic ozonation combined with extraction process. Petroleum and Coal, 2013, 55(1): 62–67

    CAS  Google Scholar 

  38. Dhir S, Uppaluri R, Purkait M K. Oxidative desulfurization: kinetic modelling. Journal of Hazardous Materials, 2009, 161(2–3): 1360–1368

    Article  CAS  PubMed  Google Scholar 

  39. Otsuki S, Nonaka T, Takashima N, Qian W H, Ishihara A, Imai T, Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000, 14(6): 1232–1239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by College Student Innovation and Entrepreneurship Training Program in Hebei Province (Grant No. S202210082057), National Natural Science Foundation Joint Fund Project—Key Support Project (Grant No. U20A20130), Natural Science Foundation of Hebei Province-Key Project (Grant No. B2021208033), Introduction of Talent Research Fund project of Hebei University of Science and Technology (Grant Nos. 1181415, 1181400), Science and Technology Research Project of Colleges and Universities in Hebei Province (Grant No. QN2020152), Hebei Technological Innovation Center for Volatile Organic Compounds Detection and Treatment in Chemical Industry (Grant No. ZXJJ20210401), Youth Science Fund Project of Hebei Provincial Natural Science Foundation (Grant Nos. B2021208040, B2022208020), and Shijiazhuang Science and Technology Bureau (Grant No. 211240233A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai-Yong Dou, Er-Hong Duan or Tao Meng.

Electronic Supplementary Material

11705_2023_2314_MOESM1_ESM.pdf

Synthesis of nanofluids composed of deep eutectic solvents and metal-modified MCM-41 particles as multifunctional promoters for fuel oil desulfurization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JX., Wang, X., Feng, YR. et al. Synthesis of nanofluids composed of deep eutectic solvents and metal-modified MCM-41 particles as multifunctional promoters for fuel oil desulfurization. Front. Chem. Sci. Eng. 17, 1776–1787 (2023). https://doi.org/10.1007/s11705-023-2314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2314-z

Keywords

Navigation