Skip to main content
Log in

Systematic screening procedure and innovative energy-saving design for ionic liquid-based extractive distillation process

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In the traditional extractive distillation process, organic solvents are often used as entrainers. However, environmental influence and high energy-consumption are significant problems in industrial application. In this study, a systematic screening strategy and innovative energy-saving design for ionic liquid-based extractive distillation process was proposed. The innovative energy-saving design focused on the binary minimum azeotrope mixtures isopropanol and water. Miscibility, environmental impact and physical properties (e.g., melting point and viscosity) of 30 ionic liquids were investigated. 1-Ethyl-3-methyl-imidazolium dicyanamide and 1-butyl-3-methyl-imidazolium dicyanamide were selected as candidate entrainers. Feasibility analysis of these two ionic liquids was further performed via residue curve maps, isovolatility line and temperature profiles. An innovative ionic liquid-based extractive distillation process combining distillation column and stripping column was designed and optimized with the objective function of minimizing the total annualized cost. The results demonstrate that the total annualized cost was reduced by 19.9% with 1-ethyl-3-methyl-imidazolium dicyanamide as the entrainer and by 24.3% with 1-butyl-3-methyl-imidazolium dicyanamide, compared with that of dimethyl sulfoxide. The method proposed in this study is conducive to the green and sustainable development of extractive distillation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiu T, Zhang P, Yang J B, Xiao L, Ye C S. Novel procedure for production of isopropanol by transesterification of isopropyl acetate with reactive distillation. Industrial & Engineering Chemistry Research, 2014, 53(36): 13881–13891

    Article  CAS  Google Scholar 

  2. Arifin S, Chien I L. Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Industrial & Engineering Chemistry Research, 2008, 47(3): 790–803

    Article  CAS  Google Scholar 

  3. Shi T, Chun W, Yang A, Su Y, Jin S, Ren J, Shen W. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. Journal of Chemical Thermodynamics, 2017, 110: 16–24

    Article  Google Scholar 

  4. Gerbaud V, Rodriguez-Donis I, Hegely L, Lang P, Denes F, You X Q. Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope. Chemical Engineering Science, 2020, 215: 115373

    Article  Google Scholar 

  5. Yang A, Su Y, Shi T, Ren J Z, Shen W F, Zhou T. Energy-efficient recovery of tetrahydrofuran and ethyl acetate by triple-column extractive distillation: entrainer design and process optimization. Frontiers of Chemical Science and Engineering, 2022, 16(2): 303–315

    Article  CAS  Google Scholar 

  6. Su Y, Yang A, Jin S, Shen W, Cui P, Ren J. Investigation on ternary system tetrahydrofuran/ethanol/water with three azeotropes separation via the combination of reactive and extractive distillation. Journal of Cleaner Production, 2020, 273(5760): 123145

    Article  CAS  Google Scholar 

  7. Graczová E, Šulgan B, Barabas S, Steltenpohl P. Methyl acetate-methanol mixture separation by extractive distillation: economic aspects. Frontiers of Chemical Science and Engineering, 2018, 12(4): 670–682

    Article  Google Scholar 

  8. Li H, Sun G L, Li D Y, Xi L, Zhou P, Li X G, Zhang J, Gao X. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid. Green Energy & Environment, 2021, 6(3): 329–338

    Article  CAS  Google Scholar 

  9. Li H, Zhou P, Zhang J, Li D Y, Li X G, Gao X. A theoretical guide for screening ionic liquid extractants applied in the separation of a binary alcohol-ester azeotrope through a DFT method. Journal of Molecular Liquids, 2018, 251: 51–60

    Article  CAS  Google Scholar 

  10. Gao X, Geng X L. Application of the chemical-looping concept for azoetrope separation. Engineering, 2021, 7(1): 84–93

    Article  Google Scholar 

  11. Zhou T, Song Z, Zhang X, Gani R, Sundmacher K. Optimal solvent design for extractive distillation processes: a multiobjective optimization-based hierarchical framework. Industrial & Engineering Chemistry Research, 2019, 58(15): 5777–5786

    Article  CAS  Google Scholar 

  12. Hegely L, Lang P. Influence of entrainer recycle for batch heteroazeotropic distillation. Frontiers of Chemical Science and Engineering, 2018, 12(4): 643–659

    Article  CAS  Google Scholar 

  13. Wu Y C, Hsu P H C, Chien I L. Critical assessment of the energy-saving potential of an extractive dividing-wall column. Industrial & Engineering Chemistry Research, 2013, 52(15): 5384–5399

    Article  CAS  Google Scholar 

  14. Chang W T, Huang C T, Cheng S H. Design and control of a complete azeotropic distillation system incorporating stripping columns for isopropyl alcohol dehydration. Industrial & Engineering Chemistry Research, 2012, 51(7): 2997–3006

    Article  CAS  Google Scholar 

  15. Liang K, Li W S, Luo H T, Xia M, Xu C J. Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column. Industrial & Engineering Chemistry Research, 2014, 53(17): 7121–7131

    Article  CAS  Google Scholar 

  16. Wang S J, Chen W Y, Chang W T, Hu C C, Cheng S H. Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns. Chemical Engineering and Processing, 2014, 85: 108–124

    Article  CAS  Google Scholar 

  17. Lek-utaiwan P, Suphanit B, Douglas P L, Mongkolsiri N. Design of extractive distillation for the separation of close-boiling mixture: solvent selection and column optimization. Computers & Chemical Engineering, 2011, 35(6): 1088–1100

    Article  CAS  Google Scholar 

  18. Gupta K M, Jiang J W. Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chemical Engineering Science, 2015, 121(6): 180–189

    Article  CAS  Google Scholar 

  19. Zhao H, Baker G A. Oxidative desulfurization of fuels using ionic liquids: a review. Frontiers of Chemical Science and Engineering, 2015, 9(3): 262–279

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song Z, Li X X, Chao H, Mo F, Zhou T, Cheng H Y, Chen L F, Qi Z W. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process. Green Energy & Environment, 2019, 4(2): 154–165

    Article  Google Scholar 

  21. Huang Y Q, Zhang Y B, Xing H B. Separation of light hydrocarbons with ionic liquids: a review. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374–1382

    Article  CAS  Google Scholar 

  22. Seiler M, Jork C, Kavarnou A, Arlt W, Hirsch R. Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids. AIChE Journal, 2004, 50(10): 2439–2454

    Article  CAS  Google Scholar 

  23. Chen H H, Chen M K, Chen B C, Chien I L. Critical assessment of using an ionic liquid as entrainer via extractive distillation. Industrial & Engineering Chemistry Research, 2017, 56(27): 7768–7782

    Article  CAS  Google Scholar 

  24. Kulajanpeng K, Suriyapraphadilok U, Gani R. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes. Journal of Cleaner Production, 2016, 111: 93–107

    Article  CAS  Google Scholar 

  25. Gutiérrez J P, Meindersma G W, de Haan A B. COSMO-RS-based ionic-liquid selection for extractive distillation processes. Industrial & Engineering Chemistry Research, 2012, 51(35): 11518–11529

    Article  Google Scholar 

  26. Bernot R J, Brueseke M A, Evans-White M A, Lamberti G A. Acute and chronic toxicity of imidazolium-based ionic liquids on daphnia magna. Environmental Toxicology and Chemistry, 2005, 24(1): 87–92

    Article  CAS  PubMed  Google Scholar 

  27. Couling D J, Bernot R J, Docherty K M, Dixon J K, Maginn E J. Toxicological evaluation of ionic liquid in a biological functional tissue construct model based on nano-hydroxyapatite/chitosan/gelatin hybrid scaffolds. International Journal of Biological Macromolecules, 2020, 158(1): 800–810

    Google Scholar 

  28. Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicology and Environmental Safety, 2009, 72(4): 1170–1176

    Article  CAS  PubMed  Google Scholar 

  29. You X Q, Gu J L, Peng C J, Shen W F, Liu H L. Improved design and optimization for separating azeotropes with heavy component as distillate through energy-saving extractive distillation by varying pressure. Industrial & Engineering Chemistry Research, 2017, 56(32): 9156–9166

    Article  CAS  Google Scholar 

  30. Rodriguez-Donis I, Gerbaud V, Joulia X. Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 1. Azeotropic mixtures with a heavy entrainer. Industrial & Engineering Chemistry Research, 2009, 48(7): 3544–3559

    Article  CAS  Google Scholar 

  31. Turton R, Bailie R C, Whiting W B, Shaeiwitz J A. Analysis, Synthesis and Design of Chemical Processes. 3rd ed. New York: Pearson Education, 2009

    Google Scholar 

  32. William L L, Chien I L. Design and Control of Distillation Systems for Separating Azeotropes. New York: John Wiley & Sons, 2010

    Google Scholar 

  33. Navarro P, Larriba M, García J, Rodríguez F. Design of the recovery section of the extracted aromatics in the separation of BTEX from naphtha feed to ethylene crackers using [4empy][Tf2N] and [emim][DCA] mixed ionic liquids as solvent. Separation and Purification Technology, 2017, 180: 149–156

    Article  CAS  Google Scholar 

  34. Swatloski R P, Holbrey J D, Rogers R D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry, 2003, 5(4): 361–363

    Article  CAS  Google Scholar 

  35. Himmler S, Hörmann S, van Hal R, Schulz P S, Wasserscheid P. Transesterification of methylsulfate and ethylsulfate ionic liquids—an environmentally benign way to synthesize long-chain and functionalized alkylsulfate ionic liquids. Green Chemistry, 2006, 8(10): 887–894

    Article  CAS  Google Scholar 

  36. Awad W H, Gilman J W, Nyden M, Jr R H H, Sutto T E, Callahan J, Trulove P C, De Long H C, Fox D M. Thermal degradation studies of alkylimidazolium salts and their application in nanocomposites. Thermochimica Acta, 2004, 409(1): 3–11

    Article  CAS  Google Scholar 

  37. Ngo H L, LeCompte K, Hargens L, McEwen A B. Thermal properties of imidazolium ionic liquids. Thermochimica Acta, 2000, 357–358: 97–102

    Article  Google Scholar 

  38. Lopes J M, Sánchez F A, Reartes S B R, Bermejo M D, Martín Á, Cocero M J. Melting point depression effect with CO2 in high melting temperature cellulose dissolving ionic liquids. modeling with group contribution equation of state. Journal of Supercritical Fluids, 2016, 107: 590–604

    Article  CAS  Google Scholar 

  39. Domańska U, Pobudkowska A, Ecker F. Liquid-liquid equilibria in the binary systems (1,3-dimethylimidazolium, or 1-butyl-3-methylimidazolium methylsulfate + hydrocarbons). Green Chemistry, 2006, 8(3): 268–276

    Article  Google Scholar 

  40. Wendler F, Todi L N, Meister F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochimica Acta, 2012, 528: 76–84

    Article  CAS  Google Scholar 

  41. Lazzús J, Pulgar-Villarroel G. A group contribution method to estimate the viscosity of ionic liquids at different temperatures. Journal of Molecular Liquids, 2015, 209: 161–168

    Article  Google Scholar 

  42. Wan Normazlan W M D, Sairi N A, Alias Y, Udaiyappan A F, Jouyban A, Khoubnasabjafari M. Composition and temperature dependence of density, durface tension, and viscosity of EMIM DEP/MMIM DMP + water + 1-propanol/2-propanol ternary mixtures and their mathematical representation using the Jouyban—Acree model. Journal of Chemical & Engineering Data, 2014, 59(8): 2337–2348

    Article  CAS  Google Scholar 

  43. Groff D, George A, Sun N, Sathitsuksanoh N, Bokinsky G, Simmons B A, Holmes B M, Keasling J D. Acid enhanced ionic liquid pretreatment of biomass. Green Chemistry, 2013, 15(5): 1264–1267

    Article  CAS  Google Scholar 

  44. Shi J, Gladden J M, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer S W, Simmons B A, Singh S. One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 2013, 15(9): 2579–2589

    Article  CAS  Google Scholar 

  45. Montalbán M G, Hidalgo J M, Collado-González M, Díaz Baños F G, Víllora G. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: correlation with structure and composition. Chemosphere, 2016, 155: 405–414

    Article  PubMed  Google Scholar 

  46. Arning J, Stolte S, Böschen A, Stock F, Pitner W R, Welz-Biermann U, Jastorff B, Ranke J. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chemistry, 2008, 10: 47–58

    Article  CAS  Google Scholar 

  47. Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermannd U, Jastorff B. The influence of anion species on the toxicity of ionic liquids observed in an (eco)toxicological test battery. Green Chemistry, 2006, 8: 621–629

    Google Scholar 

  48. Yoshida Y, Baba O, Saito G. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity. Journal of Physical Chemistry B, 2007, 111(18): 4742–4749

    Article  CAS  PubMed  Google Scholar 

  49. Wasserscheid P, Welton T. Ionic Liquid in Synthesis. New York: John Wiley & Sons, 2002

    Book  Google Scholar 

  50. Navarro P, Larriba M, Rojo E, García J, Rodríguez F. Thermal properties of cyano-based ionic liquids. Journal of Chemical & Engineering Data, 2013, 58(8): 2187–2193

    Article  CAS  Google Scholar 

  51. Valderrama J O, Forero L A, Rojas R E. Extension of a group contribution method to estimate the critical properties of ionic liquids of high molecular mass. Industrial & Engineering Chemistry Research, 2015, 54(13): 3480–3487

    Article  Google Scholar 

  52. Ge R, Hardacre C, Jacquemin J, Nancarrow P, Rooney D W. Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. Journal of Chemical & Engineering Data, 2008, 53(9): 2148–2153

    Article  CAS  Google Scholar 

  53. Zhang L Z, Han J Z, Deng D S, Ji J B. Selection of ionic liquids as entrainers for separation of water and 2-propanol. Fluid Phase Equilibria, 2007, 255(2): 179–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21878028); the Chongqing Joint Chinese Medicine Scientific Research Project (Grant No. 2020ZY023984); the Fundamental Research Funds for the Central Universities (Grant No. 2022CDJXY-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjie Hu or Weifeng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Teng, L., Hu, Y. et al. Systematic screening procedure and innovative energy-saving design for ionic liquid-based extractive distillation process. Front. Chem. Sci. Eng. 17, 34–45 (2023). https://doi.org/10.1007/s11705-022-2234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2234-3

Keywords

Navigation