Skip to main content
Log in

Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy

  • Views & Comments
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Benefiting from the advantage of taking place in biological environments without interfering with an innate biochemical process, the bioorthogonal reaction that commonly contains the “bond formation” and “bond cleavage” system has been widely used in targeted therapy for a variety of tumors. Herein, several prominent cases based on the bioorthogonal reaction that tailoring the metabolic glycoengineering tactics to modified cells for cancer immunotherapy, and the innovative tactics for reducing the metal ions’ toxic and side effects with microneedle patches will be highlighted. Based on these applications, the complexities, potential pitfalls, and opportunities of bioorthogonal chemistry in future cancer therapy will be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Science and Technology of Advanced Materials, 2018, 19(1): 771–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu Y, Aimetti A A, Langer R, Gu Z. Bioresponsive materials. Nature Reviews Materials, 2017, 2(1): 16075

    Article  CAS  Google Scholar 

  3. Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674

    Article  CAS  PubMed  Google Scholar 

  4. Liang T X Z, Chen Z W, Li H J, Gu Z. Bioorthogonal catalysis for biomedical applications. Trends in Chemistry, 2022, 4(2): 157–168

    Article  CAS  Google Scholar 

  5. Taiariol L, Chaix C, Farre C, Moreau E. Click and bioorthogonal chemistry: the future of active targeting of nanoparticles for nanomedicines? Chemical Reviews, 2022, 122(1): 340–384

    Article  CAS  PubMed  Google Scholar 

  6. Bird R, Lemmel S, Yu X, Zhou Q. Bioorthogonal chemistry and its applications. Bioconjugate Chemistry, 2021, 32(12): 2457–2479

    Article  CAS  PubMed  Google Scholar 

  7. Kostenkova K, Scalese G, Gambino D, Crans D C. Highlighting the roles of transition metals and speciation in chemical biology. Current Opinion in Chemical Biology, 2022, 69: 102155

    Article  CAS  PubMed  Google Scholar 

  8. Gurruchaga-Pereda J, Martínez-Martínez V, Rezabal E, Lopez X, Garino C, Mancin F, Cortajarena A L, Salassa L. Flavin bioorthogonal photocatalysis toward platinum substrates. ACS Catalysis, 2020, 10(1): 187–196

    Article  CAS  Google Scholar 

  9. Deb T, Tu J, Franzini R M. Mechanisms and substituent effects of metal-free bioorthogonal reactions. Chemical Reviews, 2021, 121(12): 6850–6914

    Article  CAS  PubMed  Google Scholar 

  10. Taylor M T, Blackman M L, Dmitrenko O, Fox J M. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. Journal of the American Chemical Society, 2011, 133(25): 9646–9649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. The staudinger ligation. Chemical Reviews, 2020, 120(10): 4301–4354

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Chen P R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 2016, 12(3): 129–137

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Mooney D J. Metabolic glycan labelling for cancer-targeted therapy. Nature Chemistry, 2020, 12(12): 1102–1114

    Article  CAS  PubMed  Google Scholar 

  14. Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 2013, 113(7): 4905–4979

    Article  CAS  PubMed  Google Scholar 

  15. Ren E, Liu C, Lv P, Wang J, Liu G. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics. Advanced Science, 2021, 8(21): 2100460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan A C, Levy M, Liu Y, Marlow F L, Wu P. Biocompatible copper(I) catalysts for in vivo imaging of glycans. Journal of the American Chemical Society, 2010, 132(47): 16893–16899

    Article  CAS  PubMed  Google Scholar 

  17. Sletten E M, Bertozzi C R. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of Chemical Research, 2011, 44(9): 666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Völker T, Meggers E. Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Current Opinion in Chemical Biology, 2015, 25: 48–54

    Article  PubMed  Google Scholar 

  19. Rakhit R, Navarro R, Wandless T J. Chemical biology strategies for posttranslational control of protein function. Chemistry & Biology, 2014, 21(9): 1238–1252

    Article  CAS  Google Scholar 

  20. Yusop R M, Unciti-Broceta A, Johansson E M V, Sánchez-Martín R M, Bradley M. Palladium-mediated intracellular chemistry. Nature Chemistry, 2011, 3(3): 239–243

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Yu J T, Zhao J Y, Wang J, Zheng S Q, Lin S X, Chen L, Yang M Y, Jia S, Zhang X Y, Chen P R. Palladium-triggered deprotection chemistry for protein activation in living cells. Nature Chemistry, 2014, 6(4): 352–361

    Article  CAS  PubMed  Google Scholar 

  22. Weiss J T, Dawson J C, Macleod K G, Rybski W, Fraser C, Torres-Sánchez C, Patton E E, Bradley M, Carragher N O, Unciti-Broceta A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nature Communications, 2014, 5(1): 3277

    Article  PubMed  Google Scholar 

  23. Yang W, Nan H X, Xu Z F, Huang Z X, Chen S, Li J Y, Li J, Yang H H. DNA-templated glycan labeling for monitoring receptor spatial distribution in living cells. Analytical Chemistry, 2021, 93(36): 12265–12272

    Article  CAS  PubMed  Google Scholar 

  24. Hu Q Y, Sun W J, Wang J Q, Ruan H T, Zhang X D, Ye Y Q, Shen S, Wang C, Lu W Y, Cheng K, Dotti G, Zeidner J F, Wang J, Gu Z. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2(11): 831–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pawlak J B, Gential G P P, Ruckwardt T J, Bremmers J S, Meeuwenoord N J, Ossendorp F A, Overkleeft H S, Filippov D V, van Kasteren S I. Bioorthogonal deprotection on the dendritic cell surface for chemical control of antigen cross-presentation. Angewandte Chemie International Edition, 2015, 54(19): 5628–5631

    Article  CAS  PubMed  Google Scholar 

  26. Wu D, Yang K K, Zhang Z K, Feng Y X, Rao L, Chen X Y, Yu G C. Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022, 51(4): 1336–1376

    Article  CAS  PubMed  Google Scholar 

  27. Völker T, Dempwolff F, Graumann P L, Meggers E. Progress towards bioorthogonal catalysis with organometallic compounds. Angewandte Chemie International Edition, 2014, 53(39): 10536–10540

    Article  PubMed  Google Scholar 

  28. Lim R K, Lin Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Accounts of Chemical Research, 2011, 44(9): 828–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang P V, Prescher J A, Sletten E M, Baskin J M, Miller I A, Agard N J, Lo A, Bertozzi C R. Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 1821–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laughlin S T, Bertozzi C R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nature Protocols, 2007, 2(11): 2930–2944

    Article  CAS  PubMed  Google Scholar 

  31. Li W J, Pan H, He H M, Meng X Q, Ren Q, Gong P, Jiang X, Liang Z G, Liu L L, Zheng M B, Shao X, Ma Y, Cai L. Bioorthogonal T cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small, 2019, 15(4): e1804383

    Article  PubMed  Google Scholar 

  32. Prescher J A, Bertozzi C R. Chemical technologies for probing glycans. Cell, 2006, 126(5): 851–854

    Article  CAS  PubMed  Google Scholar 

  33. Ren E, Chu C C, Zhang Y M, Wang J Q, Pang X, Lin X N, Liu C, Shi X X, Dai Q X, Lv P, Wang X, Chen X, Liu G. Mimovirus vesicle-based biological orthogonal reaction for cancer diagnosis. Small Methods, 2020, 4(9): 2000291

    Article  CAS  Google Scholar 

  34. Wang H, Wang R B, Cai K M, He H, Liu Y, Yen J, Wang Z Y, Xu M, Sun Y W, Zhou X, Yin Q, Tang L, Dobrucki I T, Dobrucki L W, Chaney E J, Boppart S A, Fan T M, Lezmi S, Chen X, Yin L, Cheng J. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13(4): 415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shim M K, Yoon H Y, Ryu J H, Koo H, Lee S, Park J H, Kim J H, Lee S, Pomper M G, Kwon I C, Kim K. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angewandte Chemie International Edition, 2016, 55(47): 14698–14703

    Article  CAS  PubMed  Google Scholar 

  36. Xie R, Dong L, Huang R B, Hong S L, Lei R X, Chen X. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angewandte Chemie International Edition, 2014, 53(51): 14082–14086

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Gauthier M, Kelly J R, Miller R J, Xu M, O’Brien W D Jr, Cheng J J. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angewandte Chemie International Edition, 2016, 55(18): 5452–5456

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Sobral M C, Zhang D K Y, Cartwright A N, Li A W, Dellacherie M O, Tringides C M, Koshy S T, Wucherpfennig K W, Mooney D J. Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19(11): 1244–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Z W, Li H J, Bian Y J, Wang Z J, Chen G J, Zhang X D, Miao Y M, Wen D, Wang J Q, Wan G, Zeng Y, Abdou P, Fang J, Li S, Sun C J, Gu Z. Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16(8): 933–941

    Article  CAS  PubMed  Google Scholar 

  40. Yu J C, Wang J Q, Zhang Y Q, Chen G J, Mao W W, Ye Y Q, Kahkoska A R, Buse J B, Langer R, Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4(5): 499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C Q, Zhang H, Zhang T, Zou X Y, Wang H, Rosenberger J E, Vannam R, Trout W S, Grimm J B, Lavis L D, Thorpe C, Jia X, Li Z, Fox J M. Enabling in vivo photocatalytic activation of rapid bioorthogonal chemistry by repurposing silicon-rhodamine fluorophores as cytocompatible far-red photocatalysts. Journal of the American Chemical Society, 2021, 143(28): 10793–10803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (Grant No. 2017YFA0205201) and the National Natural Science Foundation of China (Grant Nos. 81925019 and U1705281).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to En Ren or Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Jiang, L., Ren, E. et al. Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy. Front. Chem. Sci. Eng. 17, 483–489 (2023). https://doi.org/10.1007/s11705-022-2227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2227-2

Keywords

Navigation