Skip to main content
Log in

Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Ultra-dispersed Ni nanoparticles (7.5 nm) on nitrogen-doped carbon nanoneedles (Ni@NCNs) were prepared by simple pyrolysis of Ni-based metal—organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines. Two different crystallization methods (stirring and static) were compared and the optimal pyrolysis temperature was explored. Ni@NCNs were systematically characterized by wide analytical techniques. In the hydrogenation of p-chloronitrobenzene, Ni@NCNs-600 (pyrolyzed at 600 °C) exhibited extraordinarily high performance with 77.9 h−1 catalytic productivity and > 99% p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions (90 °C, 1.5 MPa H2), showing obvious superiority compared with reported Ni-based catalysts. Notably, the reaction smoothly proceeded at room temperature with full conversion and > 99% selectivity. Moreover, Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups (halogen, nitrile, keto, carboxylic, etc.), and could be easily recycled by magnetic separation and reused for 5 times without deactivation. The adsorption tests showed that the preferential adsorption of −NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene, thus achieving high p-chloroaniline selectivity. While the high activity can be attributed to high Ni dispersion, special morphology, and rich pore structure of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Formenti D, Ferretti F, Scharnagl F K, Beller M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chemical Reviews, 2019, 119(4): 2611–2680

    Article  CAS  Google Scholar 

  2. Trandafir M M, Neatu F, Chirica I M, Neatu S, Kuncser A C, Cucolea E I, Natu V, Barsoum M W, Florea M. Highly efficient ultralow Pd loading supported on MAX phases for chemoselective hydrogenation. ACS Catalysis, 2020, 10(10): 5899–5908

    Article  CAS  Google Scholar 

  3. Song J, Huang Z, Pan L, Li K, Zhang X, Wang L, Zou J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Applied Catalysis B: Environmental, 2018, 227: 386–408

    Article  CAS  Google Scholar 

  4. Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634

    Article  CAS  Google Scholar 

  5. Westerhaus F A, Jagadeesh R V, Wienhofer G, Pohl M M, Radnik J, Surkus A E, Rabeah J, Junge K, Junge H, Nielsen M, Brückner A, Beller M. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5(6): 537–543

    Article  CAS  Google Scholar 

  6. Jagadeesh R V, Surkus A E, Junge H, Pohl M M, Radnik J, Rabeah J, Huan H, Schunemann V, Bruckner A, Beller M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science, 2013, 342(6162): 1073–1076

    Article  CAS  Google Scholar 

  7. Sankar M, Dimitratos N, Miedziak P J, Wells P P, Kiely C J, Hutchings G J. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 2012, 41(24): 8099–8139

    Article  CAS  Google Scholar 

  8. Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881

    Article  CAS  Google Scholar 

  9. Munnik P, de Jongh P E, de Jong K P. Recent developments in the synthesis of supported catalysts. Chemical Reviews, 2015, 115(14): 6687–6718

    Article  CAS  Google Scholar 

  10. Yang X, Liu W, Tan F, Zhang Z, Chen X, Liang T, Wu C. A robust strategy of homogeneously hybridizing silica and Cu3(BTC)2 to in situ synthesize highly dispersed copper catalyst for furfural hydrogenation. Applied Catalysis A: General, 2020, 596: 117518

    Article  CAS  Google Scholar 

  11. Li J, Wang B, Qin Y, Tao Q, Chen L. MOF-derived Ni@NC catalyst: synthesis, characterization, and application in one-pot hydrogenation and reductive amination. Catalysis Science & Technology, 2019, 9(14): 3726–3734

    Article  CAS  Google Scholar 

  12. Su D, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013, 113(8): 5782–5816

    Article  CAS  Google Scholar 

  13. Wang J, Kong H, Zhang J, Hao Y, Shao Z, Ciucci F. Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116: 100717

    Article  CAS  Google Scholar 

  14. Shi Z, Yang W, Gu Y, Liao T, Sun Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Advanced Science, 2020, 7(15): 2001069

    Article  CAS  Google Scholar 

  15. Zhang Q, Zhang D, Zhou Y, Qian J, Wen X, Jiang P, Ma L, Lu C, Feng F, Li X. Preparation of heteroatom-doped carbon materials and applications in selective hydrogenation. ChemistrySelect, 2022, 7(4): e202102581

    Article  CAS  Google Scholar 

  16. Yang J, Li W, Wang D, Li Y. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Advanced Materials, 2020, 32(49): 2003300

    Article  CAS  Google Scholar 

  17. Shen K, Chen X, Chen J, Li Y. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catalysis, 2016, 6(9): 5887–5903

    Article  CAS  Google Scholar 

  18. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 2020, 120(2): 1438–1511

    Article  CAS  Google Scholar 

  19. Wang J, Wang Y, Hu H, Yang Q, Cai J. From metal-organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives. Nanoscale, 2020, 12(7): 4238–4268

    Article  CAS  Google Scholar 

  20. He Y, Wang Z, Wang H, Wang Z, Zeng G, Xu P, Huang D, Chen M, Song B, Qin H, Zhao Y. Metal—organic framework-derived nanomaterials in environment related fields: fundamentals, properties and applications. Coordination Chemistry Reviews, 2021, 429: 213618

    Article  CAS  Google Scholar 

  21. Hu W, Zheng M, Xu B, Wei Y, Zhu W, Li Q, Pang H. Design of hollow carbon-based materials derived from metal—organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(7): 3880–3917

    Article  CAS  Google Scholar 

  22. Lakhi K S, Park D H, Al-Bahily K, Cha W, Viswanathan B, Choy J H, Vinu A. Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chemical Society Reviews, 2017, 46(1): 72–101

    Article  CAS  Google Scholar 

  23. Wang C, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J, Yamauchi Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem, 2020, 6(1): 19–40

    Article  CAS  Google Scholar 

  24. Cheng N, Ren L, Xu X, Du Y, Dou S X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Advanced Energy Materials, 2018, 8(25): 1801257

    Article  Google Scholar 

  25. Song X, Jiang Y, Cheng F, Earnshaw J, Na J, Li X, Yamauchi Y. Hollow carbon-based nanoarchitectures based on ZIF: inward/outward contraction mechanism and beyond. Small, 2021, 17(2): 2004142

    Article  CAS  Google Scholar 

  26. Han J, Meng X, Lu L, Bian J, Li Z, Sun C. Single-atom Fe—Nx—C as an efficient electrocatalyst for zinc-air batteries. Advanced Functional Materials, 2019, 29(41): 1808872

    Article  CAS  Google Scholar 

  27. Fan Y, Zhuang C, Li S, Wang Y, Zou X, Liu X, Huang W, Zhu G. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(2): 1110–1118

    Article  CAS  Google Scholar 

  28. Huang L, Lv Y, Wu S, Liu P, Xiong W, Hao F, Luo H. Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions. Applied Catalysis A: General, 2019, 577: 76–85

    Article  CAS  Google Scholar 

  29. Wang J, Fan G, Li F. A hybrid nanocomposite precursor route to synthesize dispersion-enhanced Ni catalysts for the selective hydrogenation of o-chloronitrobenzene. Catalysis Science & Technology, 2013, 3(4): 982–991

    Article  CAS  Google Scholar 

  30. Zhang P, Zhao Z, Dyatkin B, Liu C, Qiu J. In situ synthesis of cotton-derived Ni/C catalysts with controllable structures and enhanced catalytic performance. Green Chemistry, 2016, 18(12): 3594–3599

    Article  CAS  Google Scholar 

  31. Pan H, Peng Y, Lu X, He J, He L, Wang C, Yue F, Zhang H, Zhou D, Xia Q. Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Molecular Catalysis, 2020, 485: 110838

    Article  Google Scholar 

  32. Li G, Yang H, Zhang H, Qi Z, Chen M, Hu W, Tian L, Nie R, Huang W. Encapsulation of nonprecious metal into ordered mesoporous N-doped carbon for efficient quinoline transfer hydrogenation with formic acid. ACS Catalysis, 2018, 8(9): 8396–8405

    Article  CAS  Google Scholar 

  33. Luo Z, Nie R, Nguyen V T, Biswas A, Behera R K, Wu X, Kobayashi T, Sadow A, Wang B, Huang W, Qi L. Transition metal-like carbocatalyst. Nature Communications, 2020, 11(1): 4091

    Article  CAS  Google Scholar 

  34. Tao Y, Nie Y, Hu H, Wang K, Chen Y, Nie R, Wang J, Lu T, Zhang Y, Xu C C. Highly active Ni nanoparticles on N-doped mesoporous carbon with tunable selectivity for the one-pot transfer hydroalkylation of nitroarenes with EtOH in the absence of H2. ChemCatChem, 2021, 13(19): 4243–4250

    Article  CAS  Google Scholar 

  35. Murugesan K, Alshammari A S, Sohail M, Beller M, Jagadeesh R V. Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2019, 370: 372–377

    Article  CAS  Google Scholar 

  36. Murugesan K, Beller M, Jagadeesh R V. Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angewandte Chemie International Edition, 2019, 58(15): 5064–5068

    Article  CAS  Google Scholar 

  37. Yang F, Wang M, Liu W, Yang B, Wang Y, Luo J, Tang Y, Hou L, Li Y, Li Z, Zhang B, Yang W, Li Y. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chemistry, 2019, 21(3): 704–711

    Article  CAS  Google Scholar 

  38. Li S, Chen X, Wang J, Yao N, Wang J, Cen J, Li X. Construction the Ni@carbon nanostructure with dual-reaction surfaces for the selective hydrogenation reaction. Applied Surface Science, 2019, 489: 786–795

    Article  CAS  Google Scholar 

  39. Li F, Ma R, Cao B, Liang J, Song H, Song H. Effect of loading method on selective hydrogenation of chloronitrobenzenes over amorphous Ni-B/CNTs catalysts. Catalysis Communications, 2016, 80: 1–4

    Article  CAS  Google Scholar 

  40. She W, Qi T, Cui M, Yan P, Ng S W, Li W, Li G. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Applied Materials & Interfaces, 2018, 10(17): 14698–14707

    Article  CAS  Google Scholar 

  41. Kang Y, Du H, Jiang B, Li H, Guo Y, Amin M A, Sugahara Y, Asahi T, Li H, Yamauchi Y. Microwave one-pot synthesis of CNT-supported amorphous Ni—P alloy nanoparticles with enhanced hydrogenation performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(12): 6560–6568

    Article  CAS  Google Scholar 

  42. Tang B, Song W, Yang E, Zhao X. MOF-derived Ni-based nanocomposites as robust catalysts for chemoselective hydrogenation of functionalized nitro compounds. RSC Advances, 2017, 7(3): 1531–1539

    Article  CAS  Google Scholar 

  43. Huang L, Lv Y, Liu S, Cui H, Zhao Z, Zhao H, Liu P, Xiong W, Hao F, Luo H. Non-noble metal Ni nanoparticles supported on highly dispersed TiO2-modified activated carbon as an efficient and recyclable catalyst for the hydrogenation of halogenated aromatic nitro compounds under mild conditions. Industrial & Engineering Chemistry Research, 2020, 59(4): 1422–1435

    Article  CAS  Google Scholar 

  44. Hahn G, Ewert J K, Denner C, Tilgner D, Kempe R. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. ChemCatChem, 2016, 8(15): 2461–2465

    Article  CAS  Google Scholar 

  45. Huang L, Tang F, Hao F, Zhao H, Liu W, Lv Y, Liu P, Xiong W, Luo H. Tuning the electron density of metal nickel via interfacial electron transfer in Ni/MCM-41 for efficient and selective catalytic hydrogenation of halogenated nitroarenes. ACS Sustainable Chemistry & Engineering, 2022, 10(9): 2947–2959

    Article  CAS  Google Scholar 

  46. Wang H, Wang Y, Li Y, Lan X, Ali B, Wang T. Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent. ACS Applied Materials & Interfaces, 2020, 12(30): 34021–34031

    Article  CAS  Google Scholar 

  47. Li M, Chen S, Jiang Q, Chen Q, Wang X, Yan Y, Liu J, Lv C, Ding W, Guo X. Origin of the activity of Co—N—C catalysts for chemoselective hydrogenation of nitroarenes. ACS Catalysis, 2021, 11(5): 3026–3039

    Article  CAS  Google Scholar 

  48. Li G, Wang B, Resasco D E. Water-mediated heterogeneously catalyzed 48. reactions. ACS Catalysis, 2019, 10(2): 1294–1309

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2021YFC2103704), the National Natural Science Foundation of China (Grant Nos. 21878266 and 22078288), the Science and Technology Research Project of Henan Province (Grant No. 222300420527), and Program of Processing and Efficient Utilization of Biomass Resources of Henan Center for Outstanding Overseas Scientists (Grant No. GZS2022007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renfeng Nie or Zhiguo Zhang.

Electronic supplementary material

11705_2022_2220_MOESM1_ESM.pdf

Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhang, Y., Nie, R. et al. Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Front. Chem. Sci. Eng. 16, 1782–1792 (2022). https://doi.org/10.1007/s11705-022-2220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2220-9

Keywords

Navigation