Skip to main content
Log in

ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect. In this work, the alkylation benzene with carbon dioxide and hydrogen reaction was proceeded by using the mixture of zinc-zirconium oxide and HZSM-5 as bifunctional catalyst. The equivalent of Zn/Zr = 1 displays the best catalytic performance at 425 °C and 3.0 MPa, and benzene conversion reaches 42.9% with a selectivity of 90% towards toluene and xylene. Moreover, the carbon dioxide conversion achieves 23.3% and the carbon monoxide selectivity is lower than 35%, indicating that more than 50% carbon dioxide has been effectively incorporated into the target product, which is the best result as far as we know. Combined with characterizations, it indicated that the Zn and Zr formed a solid solution under specific conditions (Zn/Zr = 1). The as-formed solid solution not only possesses a high surface area but also provides a large amount of oxygen vacancies. Additionally, the bifunctional catalyst has excellent stabilities that could keep operating without deactivation for at least 80 h. This work provides promising industrial applications for the upgrading of aromatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chemical Society Reviews, 2020, 49(5): 1385–1413

    Article  CAS  PubMed  Google Scholar 

  2. Bushuyev O S, De Luna P, Dinh C T, Tao L, Saur G, Van De Lagemaat J, Kelley S O, Sargent E H. What should we make with CO2 and how can we make it? Joule, 2018, 2(5): 825–832

    Article  CAS  Google Scholar 

  3. Bonura G, Cordaro M, Cannilla C, Mezzapica A, Spadaro L, Arena F, Frusteri F. Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catalysis Today, 2014, 228: 51–57

    Article  CAS  Google Scholar 

  4. Kattel S, Liu P, Chen J G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 2017, 139(29): 9739–9754

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Zhang A, Jiang X, Liu M, Sun Y, Song C, Guo X. Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: dependence on Cu-Fe interaction. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10182–10190

    Article  CAS  Google Scholar 

  6. Wang J, You Z, Zhang Q, Deng W, Wang Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts. Catalysis Today, 2013, 215(41): 186–193

    CAS  Google Scholar 

  7. Bonura G, Cordaro M, Spadaro L, Cannilla C, Arena F, Frusteri F. Hybrid Cu-ZnO-ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Applied Catalysis B: Environmental, 2013, 140–141: 16–24

    Article  Google Scholar 

  8. Martin O, Martin A J, Mondelli C, Mitchell S, Segawa T F, Hauert R, Drouilly C, Curulla-Ferre D, Perez-Ramirez J. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angewandte Chemie International Edition, 2016, 55(21): 6261–6265

    Article  CAS  PubMed  Google Scholar 

  9. Xu G, Zhang P, Cheng J, Wei T, Zhu X, Yang F. Preparation of a hollow HZSM-5 zeolite supported molybdenum catalyst by desilication-recrystallization for enhanced catalytic properties in propane aromatization. Journal of Solid State Chemistry, 2021, 300(6): 122238–122247

    Article  CAS  Google Scholar 

  10. Odedairo T, Balasamy R J, Al-Khattaf S. Toluene disproportionation and methylation over zeolites TNU-9, SSZ-33, ZSM-5, and mordenite using different reactor systems. Industrial & Engineering Chemistry Research, 2011, 50(6): 3169–3183

    Article  CAS  Google Scholar 

  11. Lyons T W, Guironnet D, Findlater M, Brookhart M. Synthesis of p-xylene from ethylene. Journal of the American Chemical Society, 2012, 134(38): 15708–15711

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Ni Y, Zhi Y, Wen F, Zhou Z, Wei Y, Zhu W, Liu Z. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angewandte Chemie International Edition, 2018, 57(38): 12549–12553

    Article  CAS  PubMed  Google Scholar 

  13. Dong P, Zhang Y, Li Z, Yong H, Li G, Ji D. Enhancement of the utilization of methanol in the alkylation of benzene with methanol over 3-aminopropyltriethoxysilane modified HZSM-5. Catalysis Communications, 2019, 123: 6–10

    Article  CAS  Google Scholar 

  14. Gao K, Li S, Wang L, Wang W. Study of the alkylation of benzene with methanol for the selective formation of toluene and xylene over Co3O4-La2O3/ZSM-5. RSC Advances, 2015, 5(56): 45098–45105

    Article  CAS  Google Scholar 

  15. Wang Y, He X, Yang F, Su Z, Zhu X. Control of framework aluminum distribution in MFI channels on the catalytic performance in alkylation of benzene with methanol. Industrial & Engineering Chemistry Research, 2020, 59(30): 13420–13427

    Article  CAS  Google Scholar 

  16. Wang Y, Xu S, He X, Yang F, Zhu X. Regulating the acid sites and framework aluminum siting in MCM-22 zeolite to enhance its performance in alkylation of benzene with methanol. Microporous and Mesoporous Materials, 2022, 332: 111677–111688

    Article  CAS  Google Scholar 

  17. Zhu Z, Chen Q, Zhu W, Kong D, Li C. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol. Catalysis Today, 2004, 93(9): 321–325

    Article  Google Scholar 

  18. Li Y, Yan T, Junge K, Beller M. Catalytic methylation of C-H bonds using CO2 and H2. Angewandte Chemie International Edition, 2014, 53(39): 10476–10480

    Article  CAS  PubMed  Google Scholar 

  19. Ting K W, Kamakura H, Poly S S, Toyao T, Hakim Siddiki S M A, Maeno Z, Matsushita K, Shimizu K I. Catalytic methylation of aromatic hydrocarbons using CO2/H2 over Re/TiO2 and H-MOR catalysts. ChemCatChem, 2020, 12(8): 2215–2220

    Article  CAS  Google Scholar 

  20. Ting K W, Kamakura H, Poly S S, Takao M, Siddiki S M A H, Maeno Z, Matsushita K, Shimizu K I, Toyao T. Catalytic methylation of m-xylene, toluene, and benzene using CO2 and H2 over TiO2-supported Re and zeolite catalysts: machine-learning-assisted catalyst optimization. ACS Catalysis, 2021, 11(9): 5829–5838

    Article  CAS  Google Scholar 

  21. Ting K W, Imbe T, Kamakura H, Maeno Z, Siddiki S M A H, Matsushita K, Shimizu K I, Toyao T. Catalytic methylation of benzene over Pt/MoOx/TiO2 and zeolite catalyst using CO2 and H2. Chemistry Letters, 2022, 51(2): 149–152

    Article  CAS  Google Scholar 

  22. Zuo J, Chen W, Liu J, Duan X, Yuan Y. Selective methylation of toluene using CO2 and H2 to para-xylene. Science Advances, 2020, 6(34): eaba5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miao D, Pan X, Jiao F, Ji Y, Hou G, Xu L, Bao X. Selective synthesis of para-xylene and light olefins from CO2/H2 in the presence of toluene. Catalysis Science & Technology, 2021, 11(13): 4521–4528

    Article  CAS  Google Scholar 

  24. Liu X, Pan Y, Zhang P, Wang Y, Xu G, Su Z, Zhu X, Yang F. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst. Frontiers of Chemical Science and Engineering, 2021, 16(3): 384–396

    Article  Google Scholar 

  25. Liu C, Lee S, Su D, Zhang Z, Pfefferle L, Haller G L. Synthesis and characterization of nanocomposites with strong interfacial interaction: sulfated ZrO2 nanoparticles supported on multiwalled carbon nanotubes. Journal of Physical Chemistry C, 2012, 116(41): 21742–21752

    Article  CAS  Google Scholar 

  26. Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767

    Article  Google Scholar 

  27. Deng X, Lü M, Meng J. Effect of heavy doping of nickel in compound Mo3Sb7: structure and thermoelectric properties. Journal of Alloys and Compounds, 2013, 577(15): 183–188

    Article  CAS  Google Scholar 

  28. Kumar N, Kishan H, Rao A, Awana V P S. Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1−xFexO3 (0 ⩽ x ⩽ 1). Journal of Alloys and Compounds, 2010, 502(2): 283–288

    Article  CAS  Google Scholar 

  29. Xie S, Iglesia E, Bell A T. Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures. Chemistry of Materials, 2000, 12(8): 2442–2447

    Article  CAS  Google Scholar 

  30. Li M, Feng Z, Ying P, Xin Q, Li C. Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2003, 5(23): 5326–5332

    Article  CAS  Google Scholar 

  31. Song H, Laudenschleger D, Carey J J, Ruland H, Nolan M, Muhler M. Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis. ACS Catalysis, 2017, 7(11): 7610–7622

    Article  CAS  Google Scholar 

  32. Dong J J, Zhang X W, You J B, Cai P F, Yin Z G, An Q, Ma X B, Jin P, Wang Z G, Chu P K. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: identification of hydrogen donors in ZnO. ACS Applied Materials & Interfaces, 2010, 2(6): 1780–1784

    Article  CAS  Google Scholar 

  33. Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances, 2017, 3(10): e1701290

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chai Y, Li L, Lu J, Li D, Shen J, Zhang Y, Liang J, Wang X. Germanium-substituted Zn2TiO4 solid solution photocatalyst for conversion of CO2 into fuels. Journal of Catalysis, 2019, 371: 144–152

    Article  CAS  Google Scholar 

  35. Xiao F X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Applied Materials & Interfaces, 2012, 4(12): 7055–7063

    Article  CAS  Google Scholar 

  36. Liu Y, Xia C, Wang Q, Zhang L, Huang A, Ke M, Song Z. Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts. Catalysis Science & Technology, 2018, 8(19): 4916–4924

    Article  CAS  Google Scholar 

  37. Wang B, Chen B, Sun Y, Xiao H, Xu X, Fu M, Wu J, Chen L, Ye D. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 238: 328–338

    Article  CAS  Google Scholar 

  38. Ou G, Xu Y, Wen B, Lin R, Ge B, Tang Y, Liang Y, Yang C, Huang K, Zu D, Yu R, Chen W, Li J, Wu H, Liu L M, Li Y. Tuning defects in oxides at room temperature by lithium reduction. Nature Communications, 2018, 9(1): 1302–1311

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang N, Li S, Zong Y, Yao Q. Sintering inhibition of flamemade Pd/CeO2 nanocatalyst for low-temperature methane combustion. Journal of Aerosol Science, 2017, 105: 64–72

    Article  CAS  Google Scholar 

  40. Liu X, Wang M, Zhou C, Zhou W, Cheng K, Kang J, Zhang Q, Deng W, Wang Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chemical Communications (Cambridge), 2018, 54(2): 140–143

    Article  CAS  Google Scholar 

  41. Cheng K, Zhou W, Kang J, He S, Shi S, Zhang Q, Pan Y, Wen W, Wang Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem, 2017, 3(2): 334–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was sponsored financially by the National Natural Science Foundation of China (Grant No. 21776076) and the Fundamental Research Funds for the Central Universities (Grant No. JKA01211710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Zhu.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Zhao, Y., Xu, G. et al. ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide. Front. Chem. Sci. Eng. 17, 404–414 (2023). https://doi.org/10.1007/s11705-022-2215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2215-6

Keywords

Navigation