Skip to main content
Log in

Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium-sulfur batteries

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The shuttle effect of soluble polysulfides is a serious problem impeding the development of lithium-sulfur batteries. Herein, continuous amino-functionalized University of Oslo 66 membranes supported on carbon nanotube films are proposed as ion-permselective interlayers that overcome these issues and show outstanding suppression of the polysulfide shuttle effect. The proposed membrane material has appropriately sized pores, and can act as ionic sieves and serve as barriers to polysulfides transport while allowing the passage of lithium ions during electrochemical cycles, thereby validly preventing the shuttling of polysulfides. Moreover, a fast catalytic conversion of polysulfides is also achieved with the as-developed interlayer. Therefore, lithium-sulfur batteries with this interlayer show a desirable initial capacity of 999.21 mAh·g–1 at 1 C and a durable cyclic stability with a decay rate of only 0.04% per cycle over 300 cycles. Moreover, a high area capacity of 4.82 mAh·cm–2 is also obtained even under increased sulfur loading (5.12 mg·cm–2) and a lean-electrolyte condition (E/S = 4.8 μL·mg–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo D, Zhang Z, Li G R, Cheng S B, Li S, Li J D, Gao R, Li M, Sy S, Deng Y P, Jiang Y, Zhu Y, Dou H, Hu Y, Yu A, Chen Z. Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5−x nanocluster toward superior Li−S performance. ACS Nano, 2020, 14(4): 4849–4860

    Article  CAS  PubMed  Google Scholar 

  2. Kalaiappan K, Rengapillai S, Marimuthu S, Murugan R, Thiru P. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries. Frontiers of Chemical Science and Engineering, 2020, 14(6): 976–987

    Article  CAS  Google Scholar 

  3. Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. Journal of the American Chemical Society, 2019, 141(9): 3977–3985

    Article  CAS  PubMed  Google Scholar 

  4. Yuan H, Peng H J, Li B Q, Xie J, Kong L, Zhao M, Chen X, Huang J Q, Zhang Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Advanced Energy Materials, 2019, 9(1): 1–8

    Article  Google Scholar 

  5. Park J, Moon J, Ri V, Lee S, Kim C, Cairns E J. Nitrogen-doped graphene quantum dots: sulfiphilic additives for the high-performance Li-S cells. ACS Applied Energy Materials, 2021, 4(4): 3518–3525

    Article  CAS  Google Scholar 

  6. Yang X F, Luo J, Sun X L. Towards high-performance solid-state Li−S batteries: from fundamental understanding to engineering design. Chemical Society Reviews, 2020, 49(7): 2140–2195

    Article  CAS  PubMed  Google Scholar 

  7. Song J J, Guo X, Zhang J Q, Chen Y, Zhang C Y, Luo L Q, Wang F Y, Wang G X. Rational design of free-standing 3D porous MXene/RGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. Journal of Materials Chemistry A, 2019, 7(14): 6507–6513

    Article  CAS  Google Scholar 

  8. Wu Z L, Chen S X, Wang L, Deng Q, Zeng Z L, Wang J, Deng S G. Implanting nickel and cobalt phosphide into well-defined carbon nanocages: a synergistic adsorption-electrocatalysis separator mediator for durable high-power Li−S batteries. Energy Storage Materials, 2021, 38: 381–388

    Article  Google Scholar 

  9. Bai M H, Hong B, Zhang K, Yuan K, Xie K Y, Wei W F, Lai Y Q. Defect-rich carbon nitride as electrolyte additive for in-situ electrode interface modification in lithium metal battery. Chemical Engineering Journal, 2021, 407: 127123

    Article  CAS  Google Scholar 

  10. Zhang Z Q, Zhao B B, Zhang S, Zhang J J, Han P X, Wang X G, Ma F R, Sun D Y, Jin Y C, Kanamura K, Cui G. A mixed electron/ion conducting interlayer enabling ultra-stable cycle performance for solid state lithium-sulfur batteries. Journal of Power Sources, 2021, 487: 229428

    Article  CAS  Google Scholar 

  11. Chen L, Yu H, Li W X, Dirican M, Liu Y, Zhang X W. Interlayer design based on carbon materials for lithium-sulfur batteries: a review. Journal of Materials Chemistry A, 2020, 8(21): 10709–10735

    Article  CAS  Google Scholar 

  12. Ye Z Q, Jiang Y, Feng T, Wang Z H, Li L, Wu F, Chen R J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy, 2020, 70: 104532

    Article  CAS  Google Scholar 

  13. Wang Y, Deng Z, Huang J Y, Li H J, Li Z Y, Peng X S, Tian Y, Lu J G, Tang H C, Chen L X, Ye Z. 2D Zr−Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li−S battery. Energy Storage Materials, 2021, 36: 466–477

    Article  Google Scholar 

  14. Mao Y Y, Li G R, Guo Y, Li Z P, Liang C D, Peng X S, Lin Z. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nature Communications, 2017, 8(1): 14628

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng Y, Zheng S S, Xue H G, Pang H. Metal-organic frameworks for lithium-sulfur batteries. Journal of Materials Chemistry A, 2019, 7(8): 3469–3491

    Article  CAS  Google Scholar 

  16. Xiao X, Zou L L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49(1): 301–331

    Article  CAS  PubMed  Google Scholar 

  17. Guo D, Li X, Wahyudi W, Li C Y, Emwas A H, Hedhili M N, Li Y X, Lai Z P. Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li-S batteries. ACS Nano, 2020, 14(12): 17163–17173

    Article  CAS  PubMed  Google Scholar 

  18. Tian M, Pei F, Yao M S, Fu Z H, Lin L L, Wu G D, Xu G, Kitagawa H, Fang X L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Materials, 2019, 21: 14–21

    Article  Google Scholar 

  19. Zang Y, Pei F, Huang J H, Fu Z H, Xu G, Fang X L. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Advanced Energy Materials, 2018, 8(31): 1–9

    Google Scholar 

  20. Chen Y J, Liu S Y, Yuan X T, Hu X C, Ye W Q, Razzaq A A, Lian Y, Chen M Z, Zhao X H, Peng Y, Choi J-H, Ahn J-H, Deng Z. rGO-CNT aerogel embedding iron phosphide nanocubes for high-performance Li-polysulfide batteries. Carbon, 2020, 167: 446–454

    Article  CAS  Google Scholar 

  21. Wu F C, Cao Y, Liu H O, Zhang X F. High-performance UiO−66−NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65

    Article  CAS  Google Scholar 

  22. Tian Y, Li G R, Zhang Y G, Luo D, Wang X, Zhao Y, Liu H, Ji P G, Du X H, Li J D, Chen Z. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Advanced Materials, 2020, 32(4): 1–11

    Google Scholar 

  23. Wan T T, Liu S M, Wu C C, Tan Z Y, Lin S L, Zhang X J, Zhang Z S, Liu G H. Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56: 132–140

    Article  CAS  Google Scholar 

  24. Li N R, Yu L H, Yang J Y, Zheng B B, Qiu X P, Xi J Y. Identifying the active sites and multifunctional effects in nitrogen-doped carbon microtube interlayer for confining-trapping-catalyzing polysulfides. Nano Energy, 2021, 79: 105466

    Article  CAS  Google Scholar 

  25. Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Advanced Materials, 2020, 32(8): 1–10

    Article  Google Scholar 

  26. Wang M Y, Han S H, Chao Z S, Li S Y, Tan B, Lai J X, Guo Z Y, Wei X L, Jin H G, Luo W B, Yi W J, Fan J C. Celgard-supported LiX Zeolite membrane as ion-permselective separator in lithium sulfur battery. Journal of Membrane Science, 2020, 611: 118386

    Article  CAS  Google Scholar 

  27. Deng S Z, Yan Y C, Wei L Q, Li T, Su X, Yang X J, Li Z T, Wu M B. Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li−S batteries. ACS Applied Energy Materials, 2019, 2(2): 1266–1273

    Article  CAS  Google Scholar 

  28. Fan Y P, Niu Z H, Zhang F, Zhang R, Zhao Y, Lu G. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator. ACS Omega, 2019, 4(6): 10328–10335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin J H, Zhang K F, Zhu Z Q, Zhang R Z, Li N, Zhao C H. CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2020, 12(2): 2497–2504

    Article  CAS  Google Scholar 

  30. Li M L, Wan Y, Huang J K, Assen A H, Hsiung C E, Jiang H, Han Y, Eddaoudi M, Lai Z P, Ming J, Li L J. Metal-organic framework-based separators for enhancing Li-S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Letters, 2017, 2(10): 2362–2367

    Article  CAS  Google Scholar 

  31. Cai Y H, Shi D C, Liu G L, Ying Y P, Cheng Y D, Wang Y X, Chen D Y, Lu J M, Zhao D. Polycrystalline zirconium metal-organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. Journal of Membrane Science, 2020, 615: 118551

    Article  CAS  Google Scholar 

  32. Strauss I, Chakarova K, Mundstock A, Mihaylov M, Hadjiivanov K, Guschanski N, Caro J. UiO−66 and UiO−66−NH2 based sensors: dielectric and FTIR investigations on the effect of CO2 adsorption. Microporous and Mesoporous Materials, 2020, 302: 110227

    Article  CAS  Google Scholar 

  33. Xie Y, Chen C L, Ren X M, Tan X L, Song G, Chen D Y, Alsaedi A, Hayat T. Coupling g-C3N4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. Journal of Colloid and Interface Science, 2019, 550: 117–127

    Article  CAS  PubMed  Google Scholar 

  34. Lei T Y, Chen W, Lv W Q, Huang J W, Zhu J, Chu J W, Yan C Y, Wu C Y, Yan Y C, He W D, Xiong J, Li Y, Yan C, Goodenough J B, Duan X. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule, 2018, 2(10): 2091–2104

    Article  CAS  Google Scholar 

  35. Chen J, Sun B Z, Sun C R, Zhang P L, Xu W F, Liu Y, Xiong B Q, Tang K W. Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Separation and Purification Technology, 2020, 251: 117398

    Article  CAS  Google Scholar 

  36. He Y B, Qiao Y, Chang Z, Zhou H S. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy & Environmental Science, 2019, 12(8): 2327–2344

    Article  CAS  Google Scholar 

  37. Jin G F, Zhang J L, Dang B Y, Wu F C, Li J D. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522

    Article  CAS  Google Scholar 

  38. Wang X X, Qi Y X, Shen Y, Yuan Y, Zhang L D, Zhang C Y, Sun Y H. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sensors and Actuators B: Chemical, 2020, 310: 127756

    Article  CAS  Google Scholar 

  39. Xie Y, Pan G Y, Jin Q, Qi X Q, Wang T, Li W, Xu H, Zheng Y H, Li S, Qie L, Huang Y, Li J. Semi-flooded sulfur cathode with ultralean absorbed electrolyte in Li−S battery. Advanced Science, 2020, 7(9): 1903168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian R Y, Park S H, King P J, Cunningham G, Coelho J, Nicolosi V, Coleman J N. Quantifying the factors limiting rate performance in battery electrodes. Nature Communications, 2019, 10(1): 1933

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou X, Liu T T, Zhao G F, Yang X F, Guo H. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li−S batteries. Energy Storage Materials, 2021, 40: 139–149

    Article  Google Scholar 

  42. Wu X, Fan L S, Qiu Y, Wang M X, Cheng J H, Guan B, Guo Z K, Zhang N Q, Sun K N. Ion-selective prussian-blue-modified Celgard separator for high-performance lithium-sulfur battery. ChemSusChem, 2018, 11(18): 3345–3351

    Article  CAS  PubMed  Google Scholar 

  43. Qian J, Wang F J, Li Y, Wang S, Zhao Y Y, Li W L, Xing Y, Deng L, Sun Q, Li L, Wu F, Chen R. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Advanced Functional Materials, 2020, 30(27): 1–9

    Article  Google Scholar 

  44. Zhang M, Chen W, Xue L X, Jiao Y, Lei T Y, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X, Xiong J. Adsorption-catalysis design in the lithium-sulfur battery. Advanced Energy Materials, 2020, 10(2): 1903008

    Article  CAS  Google Scholar 

  45. Li Y J, Wu J B, Zhang B, Wang W Y, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020, 30: 250–259

    Article  Google Scholar 

  46. Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano, 2019, 13(2): 1923–1931

    CAS  PubMed  Google Scholar 

  47. Pathak R, Chen K, Gurung A, Reza K M, Bahrami B, Pokharel J, Baniya A, He W, Wu F, Zhou Y, Xu K, Qiao Q Q. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11(1): 1–10

    Article  Google Scholar 

  48. Deng N P, Liu Y, Li Q X, Yan J, Lei W W, Wang G, Wang L Y, Liang Y Y, Kang W M, Cheng B W. Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery. Energy Storage Materials, 2019, 23: 314–349

    Article  Google Scholar 

  49. Zhou S Y, Yang S, Ding X W, Lai Y C, Nie H G, Zhang Y G, Chan D, Duan H, Huang S M, Yang Z. Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium-sulfur batteries. ACS Nano, 2020, 14(6): 7538–7551

    Article  CAS  PubMed  Google Scholar 

  50. Baumann A, Han X, Butala M M, Thoi V S. Lithium thiophosphate functionalized zirconium MOFs for Li−S batteries with enhanced rate capabilities. Journal of the American Chemical Society, 2019, 141(44): 17891–17899

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Hebei Province (Grant No. B2019202289), the Outstanding Young Talents Project of Hebei High Education Institutions (Grant No. BJ2021020) and ‘Hundred Talents Program’ of Hebei Province (Grant No. E2019050013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feichao Wu, Jingde Li or Wei Xue.

Electronic Supplementary Material

11705_2022_2206_MOESM1_ESM.pdf

Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Luo, Y., Wu, F. et al. Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium-sulfur batteries. Front. Chem. Sci. Eng. 17, 194–205 (2023). https://doi.org/10.1007/s11705-022-2206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2206-7

Keywords

Navigation