Skip to main content
Log in

Highly hydrophobic oil—water separation membrane: reutilization of waste reverse osmosis membrane

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes, resulting in a large number of wasted reverse osmosis membranes. In this work, the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO2 and 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS), respectively. Various techniques were applied to characterize the obtained membranes, which were then used to separate the oil—water system. The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2° ± 0.3°, and its oil—water separation performance was as high as 97.8%. After 20 recycle tests, the oil—water separation performance remained more than 96%, which was attributed to the film adhesion of the anchored TiO2 and PFOTS layer on the surface. This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stefano C, Mirko F, Francesca M, Enrico D. A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems. Frontiers of Chemical Science and Engineering, 2022, 16(5): 592–613

    Article  Google Scholar 

  2. UNESCO. UN-Water. United Nations World Water Development Report 2020: Water and Climate Change. Paris: UNESCO, 2020: 46–57

    Google Scholar 

  3. Lejarazu-Larraaga A, Molina S, Ortiz J M, Riccardelli G, García-Calvo E. Influence of acid/base activation treatment in the performance of recycled electromembrane for fresh water production by electrodialysis. Chemosphere, 2020, 248: 126027

    Article  Google Scholar 

  4. Jeffrey J M, Gina M V. Framework for Direct Potable Re-use. Alexandria: Water Reuse Research Foundation, 2015

    Google Scholar 

  5. Guo H, Li X H, Yang W L, Yao Z K, Mei Y, Peng L E, Yang Z, Shao S L, Tang C Y. Nanofiltration for drinking water treatment: a review. Frontiers of Chemical Science and Engineering, 2022, 16(5): 681–698

    Article  CAS  Google Scholar 

  6. García-Pachecoa R, Landaburu-Aguirrea J, Terrero-Rodríguezc P, Camposc E, Molina-Serranoc F, Rabadána J, Zarzoc D, García-Calvo E. Validation of recycled membranes for treating brackish water at pilot scale. Desalination, 2018, 433: 199–208

    Article  Google Scholar 

  7. Zhao Y, Qiu Y B, Mamrol N, Ren L F, Li X, Shao J H, Yang X, Bart V D B. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Frontiers of Chemical Science and Engineering, 2022, 16(5): 634–660

    Article  CAS  Google Scholar 

  8. Chen R Z, Dong X F, Ge Q C. Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing. Frontiers of Chemical Science and Engineering, 2022, 16(5): 755–763

    Article  CAS  Google Scholar 

  9. Jorge S S, Alberto B, Raquel G P, Junkal L A, Eloy G C. Prospective life cycle assessment and economic analysis of direct recycling of wasted reverse osmosis membranes based on geographic information systems. Journal of Cleaner Production, 2021, 282: 124400

    Article  Google Scholar 

  10. Liyanaarachchi S, Shu L, Muthukumaran S, Jegatheesan V, Baskaran K. Problems in seawater industrial desalination processes and potential sustainable solutions: a review. Reviews in Environmental Science and Biotechnology, 2014, 13(2): 203–214

    Article  CAS  Google Scholar 

  11. Ismail A F, Padaki M, Hilal N, Matsuura T, Lau W J. Thin film composite membrane: recent development and future potential. Desalination, 2015, 356: 140–148

    Article  CAS  Google Scholar 

  12. Shenvi S S, Isloor A M, Ismail A F. A review on RO membrane technology: developments and challenges. Desalination, 2015, 368: 10–26

    Article  CAS  Google Scholar 

  13. Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Research, 2009, 43(9): 2317–2348

    Article  CAS  Google Scholar 

  14. Yearbook I D A. Topsfield. Water Desalination Report, 2018–2019, 2019

  15. Ziolkowska J R. Is desalination affordable?—regional cost and price analysis. Water Resources Management, 2015, 29(5): 1385–1397

    Article  Google Scholar 

  16. Junkal L A, Raquel G P, Serena M, Laura R S, Javier R, Eloy G C. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 2016, 393: 16–30

    Article  Google Scholar 

  17. Jorge S S, Raquel G P, Junkal L A, Eloy G C. Recycling of wasted reverse osmosis membranes: comparative LCA and cost-effectiveness analysis at pilot scale. Resources, Conservation and Recycling, 2019, 150: 104423

    Article  Google Scholar 

  18. Li W C, Tse H F, Fok L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Science of the Total Environment, 2016, 566: 333–349

    Article  Google Scholar 

  19. Raquel G P, Junkal L A, Amaia L L, Laura R S, Serena M, Thomas R, Eloy G C. Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential. Desalination, 2019, 457: 133–143

    Article  Google Scholar 

  20. Paula E C D, Amaral M C S. Extending the life-cycle of reverse osmosis membranes: a review. Waste Management & Research, 2017, 35(5): 456–470

    Article  Google Scholar 

  21. Goosen M F A, Sablani S S, Al-Hinai H, Al-Obeidani S, Al-Belushi R, Jackson D. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Separation Science and Technology, 2005, 39(10): 2261–2297

    Article  Google Scholar 

  22. Mohammad R M, Arto P, Mehrdad H, Jonni A, Mika M. Wasted RO membranes recycling: re-use as NF membranes by polyelectrolyte layer-by-layer deposition. Journal of Membrane Science, 2019, 584: 300–308

    Article  Google Scholar 

  23. Jesús M L, Lucía N R, Jorge S S, Serena M, Rehab E S. Recycled desalination membranes as a support material for biofilm development: a new approach for microcystin removal during water treatment. Science of the Total Environment, 2019, 647: 785–793

    Article  Google Scholar 

  24. Jesús M L, Serena M. Optimization of recycled-membrane biofilm reactor (R-MBfR) as a sustainable biological treatment for microcystins removal. Biochemical Engineering Journal, 2020, 153: 107422

    Article  Google Scholar 

  25. Will L, Zenah B H, Marlene J C, Mikel D, Greg L, Bradley P L, Pierre L C. Towards new opportunities for re-use, recycling and disposal of used reverse osmosis membranes. Desalination, 2012, 299: 103–112

    Article  Google Scholar 

  26. Eduardo C D P, Míriam C S A. Environmental and economic evaluation of wasted reverse osmosis membranes recycling by means of chemical conversion. Journal of Cleaner Production, 2018, 194: 85–93

    Article  Google Scholar 

  27. Hou L, Zhang Y Q. Research status on the system of spiralwound reverse osmosis membrane module for sea water desalination. Technology of Water Treatment, 2015, 41(10): 21–25

    CAS  Google Scholar 

  28. Goh P S, Wong K C, Wong T W, Ismail A F. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Frontiers of Chemical Science and Engineering, 2022, 16(5): 564–591

    Article  CAS  Google Scholar 

  29. Plopeanu M C, Dascalescu L, Yahiaoui B, Antoniu A, Hulea M, Notingher P V. Repartition of electric potential at the surface of nonwoven fabrics for air filtration. IEEE Transactions on Industry Applications, 2012, 48(3): 851–856

    Article  CAS  Google Scholar 

  30. Anandjiwala R D, Boguslavsky L. Development of needle-punched nonwoven fabrics from flax fibers for air filtration applications. Textile Research Journal, 2008, 78(7): 614–624

    Article  CAS  Google Scholar 

  31. Sugioka M, Yoshida N, Yamane T, Kakihana Y, Higa M, Matsumura T, Sakoda M, Iida K. Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226 L wastewater treatment reactor. Environmental Research, 2022, 205: 112416

    Article  CAS  Google Scholar 

  32. Zhao P, Qin N, Ren C L, Wen J Z. Surface modification of polyamide meshes and nonwoven fabrics by plasma etching and a PDA/cellulose coating for oil/water separation. Applied Surface Science, 2019, 481: 883–891

    Article  CAS  Google Scholar 

  33. Yuan Z S, Ke Z W, Qiu Y H, Zheng L J, Yang Y, Gu Q S, Wang C Y. Prewetting polypropylene-wood pulp fiber composite nonwoven fabric for oil—water separation. ACS Applied Materials & Interfaces, 2020, 12(41): 46923–46932

    Article  CAS  Google Scholar 

  34. Babiker D M D, Zhu L P, Yagoub H, Lin F, Altam A A, Liang S M, Jin Y, Yang S G. The change from hydrophilicity to hydrophobicity of HEC/PAA complex membrane for water-in-oil emulsion separation: thermal versus chemical treatment. Carbohydrate Polymers, 2020, 241: 116343

    Article  CAS  Google Scholar 

  35. Sun F, Li T T, Zhang X Y, Shiu B C, Zhang Y, Lou C W, Lin J H. Preparation and oil—water separation evaluations of polypropylene/low-melt-point polyester composites reinforced by thermal bonding and one-step solution immersion. Polymer International, 2020, 69(9): 752–762

    Article  CAS  Google Scholar 

  36. Pandit S K, Tudu B K, Mishra I M, Kumar A. Development of stain resistant, superhydrophobic and self-cleaning coating on wood surface. Progress in Organic Coatings, 2020, 139: 105453

    Article  CAS  Google Scholar 

  37. Nanda D, Swetha T, Varshney P, Gupta P K, Mohapatra S S, Kumar A. Temperature dependent switchable superamphiphobic coating on steel alloy surface. Journal of Alloys and Compounds, 2017, 727: 1293–1301

    Article  CAS  Google Scholar 

  38. Ma Z, Shu G M, Lu X L. Preparation of an antifouling and easy cleaning membrane based on amphiphobic fluorine island structure and chemical cleaning responsiveness. Journal of Membrane Science, 2020, 611: 118403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21576205), the Tianjin Natural Science Foundation (Grant No. 18JCTPJC48600), and the Training Project of Innovation Team of Colleges and Universities in Tianjin (Grant No. TD13-5020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Luo, Y., Ning, L. et al. Highly hydrophobic oil—water separation membrane: reutilization of waste reverse osmosis membrane. Front. Chem. Sci. Eng. 16, 1606–1615 (2022). https://doi.org/10.1007/s11705-022-2200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2200-0

Keywords

Navigation