Skip to main content
Log in

Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for semi-hydrogenation of α,β-unsaturated aldehydes

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Recycling industrial solid waste not only saves resources but also eliminates environmental concerns of toxic threats. Herein, we proposed a new strategy for the utilization of petrochemical-derived carbon black waste, a waste vanadium-bearing resource (V > 30000 ppm (10−6)). Chemical leaching was employed to extract metallic vanadium from the waste and the leachate containing V was used as an alternative raw material for the fabrication of vanadate nanomaterials. Through the screening of various metal cations, it was found that the contaminated Na+ during the leaching process showed strong competitive coordination with the vanadium ions. However, by adding foreign Ce3+ and Y3+ cations, two rare-earth vanadates, viz., flower-like CeVO4 and spherical YVO4 nanomaterials, were successfully synthesized. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier-transform infrared, and N2 physisorption were applied to analyze the physicochemical properties of the waste-derived nanomaterials. Importantly, we found that rare-earth vanadate catalysts exhibited good activities toward the semi-hydrogenation of α,β-unsaturated aldehydes. The conversion of cinnamaldehyde and cinnamic alcohol selectivity were even higher than those of the common CeVO4 prepared using pure chemicals (67.2% vs. 27.7% and 88.4% vs. 53.5%). Our work provides a valuable new reference for preparing vanadate catalysts by the use of abundant vanadium-bearing waste resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma P, Gaur V K, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo H H, Wong J W C. Trends in mitigation of industrial waste: global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of the Total Environment, 2022, 811: 152357

    Article  CAS  Google Scholar 

  2. Zhen X, Ng W C, Fendy, Tong Y W, Dai Y, Neoh K G, Wang C-H. Toxicity assessment of carbon black waste: a by-product from oil refineries. Journal of Hazardous Materials, 2017, 321: 600–610

    Article  CAS  Google Scholar 

  3. Ng H S, Kee P E, Yim H S, Chen P-T, Wei Y-H, Lan J C W. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource Technology, 2020, 302: 122889

    Article  CAS  Google Scholar 

  4. Xu L, Liu Y, Li L, Hu Z, Yu J C. Fabrication of a photocatalyst with biomass waste for H2O2 synthesis. ACS Catalysis, 2021, 11(23): 14480–14488

    Article  CAS  Google Scholar 

  5. Vollmer I, Jenks M J F, Mayorga Gonzalez R, Meirer F, Weckhuysen B M. Plastic waste conversion over a refinery waste catalyst. Angewandte Chemie International Edition, 2021, 60(29): 16101–16108

    Article  CAS  Google Scholar 

  6. Niu B E S, Cao Y, Xiao J, Zhan L, Xu Z. Utilizing e-waste for construction of magnetic and core-shell z-scheme photocatalysts: an effective approach to e-waste recycling. Environmental Science & Technology, 2021, 55(2): 1279–1289

    Article  CAS  Google Scholar 

  7. Šyc M, Simon F G, Hykš J, Braga R, Biganzoli L, Costa G, Funari V, Grosso M. Metal recovery from incineration bottom ash: state-of-the-art and recent developments. Journal of Hazardous Materials, 2020, 393: 122433

    Article  Google Scholar 

  8. Bakalár T, Pavolová H, Hajduová Z, Lacko R, Kyšel’a K. Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy. Journal of Cleaner Production, 2021, 302: 126977

    Article  Google Scholar 

  9. Shanshool J, Zayona A T, Awd M M. Heavy petroleum products as possible feedstocks for carbon black production. Fuel, 1987, 66(12): 1664–1666

    Article  CAS  Google Scholar 

  10. Dechaine G P, Gray M R. Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal. Energy & Fuels, 2010, 24(5): 2795–2808

    Article  CAS  Google Scholar 

  11. Zhan G, Ng W C, Lin W Y, Koh S N, Wang C H. Effective recovery of vanadium from oil refinery waste into vanadium-based metal—organic frameworks. Environmental Science & Technology, 2018, 52(5): 3008–3015

    Article  CAS  Google Scholar 

  12. Ye M, Li G, Yan P, Ren J, Zheng L, Han D, Sun S, Huang S, Zhong Y. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere, 2017, 185: 1189–1196

    Article  CAS  Google Scholar 

  13. Li J, Zhang B, Yang M, Lin H. Bioleaching of vanadium by acidithiobacillus ferrooxidans from vanadium-bearing resources: performance and mechanisms. Journal of Hazardous Materials, 2021, 416: 125843

    Article  CAS  Google Scholar 

  14. Nowak B, Pessl A, Aschenbrenner P, Szentannai P, Mattenberger H, Rechberger H, Hermann L, Winter F. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. Journal of Hazardous Materials, 2010, 179(1–3): 323–331

    Article  CAS  Google Scholar 

  15. Couto N, Ferreira A R, Lopes V, Peters S C, Mateus E P, Ribeiro A B, Pamukcu S. Electrodialytic recovery of rare earth elements from coal ashes. Electrochimica Acta, 2020, 359: 136934

    Article  CAS  Google Scholar 

  16. Dhiman S, Gupta B. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. Journal of Cleaner Production, 2019, 225: 820–832

    Article  CAS  Google Scholar 

  17. Liu Z, Zhang Y, Dai Z, Huang J, Liu C. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction—precipitation process. Frontiers of Chemical Science and Engineering, 2020, 14(5): 902–912

    Article  CAS  Google Scholar 

  18. Virolainen S, Wesselborg T, Kaukinen A, Sainio T. Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange. Hydrometallurgy, 2021, 202: 105602

    Article  CAS  Google Scholar 

  19. Menzel K, Barros L, García A, Ruby-Figueroa R, Estay H. Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage. Separation and Purification Technology, 2021, 270: 118721

    Article  CAS  Google Scholar 

  20. Xanthopoulos P, Kalebić D, Kamariah N, Bussé J, Dehaen W, Spooren J, Binnemans K. Recovery of copper from ammoniacal leachates by ion flotation. Journal of Sustainable Metallurgy, 2021, 7(4): 1552–1564

    Article  Google Scholar 

  21. Mandal M, Cramer C J, Truhlar D G, Sauer J, Gagliardi L. Structure and reactivity of single-site vanadium catalysts supported on metal—organic frameworks. ACS Catalysis, 2020, 10(17): 10051–10059

    Article  CAS  Google Scholar 

  22. Petranikova M, Tkaczyk A H, Bartl A, Amato A, Lapkovskis V, Tunsu C. Vanadium sustainability in the context of innovative recycling and sourcing development. Waste Management, 2020, 113: 521–544

    Article  CAS  Google Scholar 

  23. Wan J, Du H, Gao F, Wang S, Gao M, Liu B, Zhang Y. Direct leaching of vanadium from vanadium-bearing steel slag using naoh solutions: a case study. Mineral Processing and Extractive Metallurgy Review, 2020, 42(4): 257–267

    Article  Google Scholar 

  24. Dong P, Maneerung T, Ng W C, Zhen X, Dai Y, Tong Y W, Ting Y P, Koh S N, Wang C H, Neoh K G. Chemically treated carbon black waste and its potential applications. Journal of Hazardous Materials, 2017, 321: 62–72

    Article  CAS  Google Scholar 

  25. Xu X, Xiong F, Meng J, Wang X, Niu C, An Q, Mai L. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Advanced Functional Materials, 2020, 30(10): 1904398

    Article  CAS  Google Scholar 

  26. Marberger A, Ferri D, Elsener M, Sagar A, Artner C, Schermanz K, Kröcher O. Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2017, 218: 731–742

    Article  CAS  Google Scholar 

  27. Wu Y T, Lin J R Y, Lin L Y, Chen Y S, Geng D S. Facile solid-state synthesis of heteroatom-doped and alkaline-treated bismuth vanadate for photocatalyzing methylene blue degradation and water oxidation. Materials Science in Semiconductor Processing, 2020, 117: 105180

    Article  CAS  Google Scholar 

  28. Wang X, Bai Y, Wu F, Wu C. Vanadium organometallics as an interfacial stabilizer for CaxV2O5/vanadyl acetylacetonate hybrid nanocomposite with enhanced energy density and power rate for full lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(26): 23291–23302

    Article  CAS  Google Scholar 

  29. Alves N A, Olean-Oliveira A, Cardoso C X, Teixeira M F S. Photochemiresistor sensor development based on a bismuth vanadate type semiconductor for determination of chemical oxygen demand. ACS Applied Materials & Interfaces, 2020, 12(16): 18723–18729

    Article  CAS  Google Scholar 

  30. del Rosal B, Perez-Delgado A, Carrasco E, Jovanovic D J, Dramicanin M D, Drazic G, Juarranz de la Fuente A, Sanz-Rodriguez F, Jaque D. Neodymium-based stoichiometric ultrasmall nanoparticles for multifunctional deep-tissue photothermal therapy. Advanced Optical Materials, 2016, 4(5): 782–789

    Article  CAS  Google Scholar 

  31. Adijanto L, Balaji Padmanabhan V, Holmes K J, Gorte R J, Vohs J M. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates. Journal of Solid State Chemistry, 2012, 190: 12–17

    Article  CAS  Google Scholar 

  32. Kumar J V, Karthik R, Chen S M, Marikkani S, Elangovan A, Muthuraj V. Green synthesis of a novel flower-like cerium vanadate microstructure for electrochemical detection of tryptophan in food and biological samples. Journal of Colloid and Interface Science, 2017, 496: 78–86

    Article  CAS  Google Scholar 

  33. Mishra S, Priyadarshinee M, Debnath A K, Muthe K P, Mallick B C, Das N, Parhi P. Rapid microwave assisted hydrothermal synthesis cerium vanadate nanoparticle and its photocatalytic and antibacterial studies. Journal of Physics and Chemistry of Solids, 2020, 137: 109211

    Article  CAS  Google Scholar 

  34. Perala R S, Singh B P, Putta V N K, Acharya R, Ningthoujam R S. Enrichment of crystal field modification via incorporation of alkali K+ ions in YVO4:Ho3+/Yb3+ nanophosphor and its hybrid with superparamagnetic iron oxide nanoparticles for optical, advanced anticounterfeiting, uranyl detection, and hyperthermia applications. ACS Omega, 2021, 6(30): 19517–19528

    Article  CAS  Google Scholar 

  35. Jack T R, Sullivan E A, Zajic J E. Leaching of vanadium and other metals from athabasca oil sands coke and coke ash. Fuel, 1979, 58(8): 589–594

    Article  CAS  Google Scholar 

  36. Al-Ghouti M A, Al-Degs Y S, Ghrair A, Khoury H, Ziedan M. Extraction and separation of vanadium and nickel from fly ash produced in heavy fuel power plants. Chemical Engineering Journal, 2011, 173(1): 191–197

    Article  CAS  Google Scholar 

  37. Kurian V, Gupta R. Distribution of vanadium, nickel, and other trace metals in soot and char from asphaltene pyrolysis and gasification. Energy & Fuels, 2016, 30(3): 1605–1615

    Article  CAS  Google Scholar 

  38. Senneca O, Chirone R, Cortese L, Salatino P. Pyrolysis and combustion of a solid refinery waste. Fuel, 2020, 267: 117258

    Article  CAS  Google Scholar 

  39. Livage J. Synthesis of polyoxovanadates via “chimie douce”. Coordination Chemistry Reviews, 1998, 178–180: 999–1018

    Article  Google Scholar 

  40. Zhan G, Ng W C, Koh S N, Wang C H. Template-free synthesis of alkaline earth vanadate nanomaterials from leaching solutions of oil refinery waste. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2292–2301

    Article  CAS  Google Scholar 

  41. Ye P, Wang X, Wang M, Fan Y, Xiang X. Recovery of vanadium from stone coal acid leaching solution by coprecipitation, alkaline roasting and water leaching. Hydrometallurgy, 2012, 117–118: 108–115

    Article  Google Scholar 

  42. Kim Y, Lee Y W, Lee S, Gong J, Lee H S, Han S W. One-pot synthesis of ternary alloy hollow nanostructures with controlled morphologies for electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13(38): 45538–45546

    Article  CAS  Google Scholar 

  43. Zhang S Y, Ci L J. Synthesis and formation mechanism of Cu3V2O7(OH)2·2H2O nanowires. Materials Research Bulletin, 2009, 44(10): 2027–2032

    Article  CAS  Google Scholar 

  44. Ropp R C, Carroll B. Precipitation of rare earth vanadates from aqueous solution. Journal of Inorganic and Nuclear Chemistry, 1977, 39(8): 1303–1307

    Article  CAS  Google Scholar 

  45. Nag A, Ghosh D, Wanklyn B M. Measurements of magnetic susceptibilities and anisotropy of europium vanadate (EuVO4) crystal. Solid State Communications, 1998, 108(5): 265–270

    Article  CAS  Google Scholar 

  46. Othman I, Hisham Zain J, Abu Haija M, Banat F. Catalytic activation of peroxymonosulfate using CeVO4 for phenol degradation: an insight into the reaction pathway. Applied Catalysis B: Environmental, 2020, 266: 118601

    Article  CAS  Google Scholar 

  47. Phuruangrat A, Thongtem S, Thongtem T. Synthesis, characterization, and UV light-driven photocatalytic properties of CeVO4 nanoparticles synthesized by sol—gel method. Journal of the Australian Ceramic Society, 2021, 57(2): 597–604

    Article  CAS  Google Scholar 

  48. Hou P, Ju P, Hao L, Chen C, Jiang F, Ding H, Sun C. Colorimetric determination of hydrogen peroxide based on the robust peroxidase-like activities of flower-like YVO4 microstructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 126427

    Article  CAS  Google Scholar 

  49. Vadivel S, Paul B, Kumaravel M, Hariganesh S, Rajendran S, Prasanga Gayanath Mantilaka M M M G, Mamba G, Puviarasu P. Facile synthesis of YbVO4, and YVO4 nanostructures through mof route for photocatalytic applications. Inorganic Chemistry Communications, 2020, 115: 107855

    Article  CAS  Google Scholar 

  50. Ansari A A, Labis J P. Preparation and photoluminescence properties of hydrothermally synthesized YVO4:Eu3+ nanofibers. Materials Letters, 2012, 88: 152–155

    Article  CAS  Google Scholar 

  51. Wu M, Park H, Lee E G, Lee S, Hong Y J, Choi S. Luminescence quenching behavior of hydrothermally grown YVO4:Eu3+ nanophosphor excited under low temperature and vacuum ultra violet discharge. Materials, 2020, 13(15): 3270

    Article  CAS  Google Scholar 

  52. Howaniec N, Smoliński A. Porous structure properties of andropogon gerardi derived carbon materials. Materials, 2018, 11(6): 876

    Article  Google Scholar 

  53. Lu G, Zou X, Wang F, Wang H, Li W. Facile fabrication of CeVO4 microspheres with efficient visible-light photocatalytic activity. Materials Letters, 2017, 195: 168–171

    Article  CAS  Google Scholar 

  54. Liu Y, Zhang M, Yang L, Wu Z, Li Z. Preparation of CeVO4 with VO2 as precursor performing high selectivity and sensitivity to ammonia. Journal of Alloys and Compounds, 2022, 909: 164666

    Article  CAS  Google Scholar 

  55. Bustamante T M, Fraga M A, Fierro J L G, Campos C H, Pecchi G. Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338

    Article  CAS  Google Scholar 

  56. Gallezot P, Richard D. Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126

    Article  CAS  Google Scholar 

  57. Bailón-García E, Maldonado-Hódar F, Pérez-Cadenas A, Carrasco-Marín F. Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877

    Article  Google Scholar 

  58. Bonita Y, Jain V, Geng F, O’Connell T P, Ramos N X, Rai N, Hicks J C. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: catalytic consequences of product and pyridine doping. Applied Catalysis B: Environmental, 2020, 277: 119272

    Article  CAS  Google Scholar 

  59. Lv Y, Han M, Gong W, Wang D, Chen C, Wang G, Zhang H, Zhao H. Fe—Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526

    Article  CAS  Google Scholar 

  60. Huang Y, Qiu S, Xu J, Lian H. Hydrogenation of citral to citronellal catalyzed by waste fluid catalytic cracking catalyst supported nickel. ACS Omega, 2021, 6(1): 476–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. U21A20324 and 21908073), the Natural Science Foundation of Fujian Province (Grant Nos. 2019J01074 and 2021J06026). We also thank Mr. Pingping Chen from Fujian Refining & Petrochemical Company for the helpful discussions on this project and thank the Analysis and Testing Center of Huaqiao University for providing part of the characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowu Zhan, Shu-Feng Zhou or Qingbiao Li.

Electronic Supplementary Material

11705_2022_2191_MOESM1_ESM.pdf

Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for semi-hydrogenation of α,β-unsaturated aldehydes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhan, G., Song, Y. et al. Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for semi-hydrogenation of α,β-unsaturated aldehydes. Front. Chem. Sci. Eng. 16, 1793–1806 (2022). https://doi.org/10.1007/s11705-022-2191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2191-x

Keywords

Navigation