Skip to main content

Advertisement

Log in

Continuous deacylation of amides in a high-temperature and high-pressure microreactor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The deacylation of amides, which is widely employed in the pharmaceutical industry, is not a fast reaction under normal conditions. To intensify this reaction, a high-temperature and high-pressure continuous microreaction technology was developed, whose space-time yield was 49.4 times that of traditional batch reactions. Using the deacylation of acetanilide as a model reaction, the effects of the temperature, pressure, reaction time, molar ratio of reactants, and water composition on acetanilide conversion were carefully studied. Based on the rapid heating and cooling capabilities, the kinetics of acetanilide deacylation at high temperatures were investigated to determine the orders of reactants and activation energy. This microreaction technology was further applied to a variety of other amides to understand the influence of substituents and steric hindrance on the deacylation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pattabiraman V R, Bode J W. Rethinking amide bond synthesis. Nature, 2011, 480(7378): 471–479

    Article  CAS  Google Scholar 

  2. Brown D G, Bostrom J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? Miniperspective Journal of Medicinal Chemistry, 2016, 59(10): 4443–4458

    Article  CAS  Google Scholar 

  3. Etayo P, Vidal-Ferran A. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chemical Society Reviews, 2013, 42(2): 728–754

    Article  CAS  Google Scholar 

  4. Yu C B, Wang J, Zhou Y G. Facile synthesis of chiral indolines through asymmetric hydrogenation of in situ generated indoles. Organic Chemistry Frontiers, 2018, 5(19): 2805–2809

    Article  CAS  Google Scholar 

  5. Kreituss I, Murakami Y, Binanzer M, Bode J W. Kinetic resolution of nitrogen heterocycles with a reusable polymer-supported reagent. Angewandte Chemie International Edition, 2012, 51(42): 10660–10663

    Article  CAS  Google Scholar 

  6. Arockiam P B, Bruneau C, Dixneuf P H. Ruthenium (II)-catalyzed C−H bond activation and functionalization. Chemical Reviews, 2012, 112(11): 5879–5918

    Article  CAS  Google Scholar 

  7. Rej S, Chatani N. Rhodium-catalyzed C(sp2)− or C(sp3)−H bond functionalization assisted by removable directing groups. Angewandte Chemie International Edition, 2019, 58(25): 8304–8329

    Article  CAS  Google Scholar 

  8. Zhang X G, Dai H X, Wasa M, Yu J Q. Pd (II)-catalyzed ortho trifluoromethylation of arenes and insights into the coordination mode of acidic amide directing groups. Journal of the American Chemical Society, 2012, 134(29): 11948–11951

    Article  CAS  Google Scholar 

  9. Zhu R Y, Farmer M E, Chen Y Q, Yu J Q. A simple and versatile amide directing group for C−H functionalizations. Angewandte Chemie International Edition, 2016, 55(36): 10578–10599

    Article  CAS  Google Scholar 

  10. Zhang F, Spring D R. Arene C−H functionalization using a removable/modifiable or a traceless directing group strategy. Chemical Society Reviews, 2014, 43(20): 6906–6919

    Article  CAS  Google Scholar 

  11. Wong J Y, Barker G. Recent advances in benzylic and heterobenzylic lithiation. Tetrahedron, 2020, 76(50): 131704

    Article  CAS  Google Scholar 

  12. Dey A, Sinha S K, Achar T K, Maiti D. Accessing remote meta- and para-C(sp2)−H bonds with covalently attached directing groups. Angewandte Chemie International Edition, 2019, 58(32): 10820–10843

    Article  CAS  Google Scholar 

  13. Schowen R L, Jayaraman H, Kershner L. Catalytic efficiencies in amide hydrolysis. The two-step mechanism. Journal of the American Chemical Society, 1966, 88(14): 3373–3375

    Article  CAS  Google Scholar 

  14. Bender M L, Ginger R D. Intermediates in the reactions of carboxylic acid derivatives. IV. The hydrolysis of benzamide. Journal of the American Chemical Society, 1955, 77(2): 348–351

    Article  CAS  Google Scholar 

  15. Meloche I, Laidler K J. Substituent effects in the acid and base hydrolyses of aromatic amides. Journal of the American Chemical Society, 1951, 73(4): 1712–1714

    Article  CAS  Google Scholar 

  16. Schowen R L, Zuorick G W. Amide hydrolysis. Superimposed general base catalysis in the cleavage of anilides. Journal of the American Chemical Society, 1966, 88(6): 1223–1225

    Article  CAS  Google Scholar 

  17. Duan P, Dai L, Savage P E. Kinetics and mechanism of N-substituted amide hydrolysis in high-temperature water. Journal of Supercritical Fluids, 2010, 51(3): 362–368

    Article  CAS  Google Scholar 

  18. Yu Z, Geisler K, Leontidou T, Young R, Vonlanthen S, Purton S, Abell C, Smith A. Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, 2021, 56: 102293

    Article  Google Scholar 

  19. Yang Z, Yang Y, Zhang X, Du W, Zhang J, Qian G, Duan X, Zhou X. High-yield production of p-diethynylbenzene through consecutive bromination/dehydrobromination in a microreactor system. AIChE Journal, 2022, 68(2): e17498

    Article  CAS  Google Scholar 

  20. Feng Y, Zhang M, Zhang H, Wang J, Yang Y. Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach. Chemical Engineering Journal, 2021, 425: 131750

    Article  CAS  Google Scholar 

  21. Marre S, Adamo A, Basak S, Aymonier C, Jensen K F. Design and packaging of microreactors for high pressure and high temperature applications. Industrial & Engineering Chemistry Research, 2010, 49(22): 11310–11320

    Article  CAS  Google Scholar 

  22. Qin K, Wang K, Luo R, Li Y, Wang T. Dispersion of supercritical carbon dioxide to [Emim] [BF4] with a T-junction tubing connector. Chemical Engineering and Processing, 2018, 127: 58–64

    Article  CAS  Google Scholar 

  23. Goodwin A K, Rorrer G L. Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor. Chemical Engineering Journal, 2010, 163(1–2): 10–21

    Article  CAS  Google Scholar 

  24. Kawanami H, Sato M, Chatterjee M, Otabe N, Tuji T, Ikushima Y, Ishizaka T, Yokoyama T, Suzuki T M. Highly selective non-catalytic Claisen rearrangement in a high-pressure and high-temperature water microreaction system. Chemical Engineering Journal, 2011, 167(2–3): 572–577

    Article  CAS  Google Scholar 

  25. Adeyemi A, Bergman J, Branalt J, Sävmarker J, Larhed M. Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Organic Process Research & Development, 2017, 21(7): 947–955

    Article  CAS  Google Scholar 

  26. Jensen K F. Flow chemistry—microreaction technology comes of age. AIChE Journal, 2017, 63(3): 858–869

    Article  CAS  Google Scholar 

  27. Gemoets H P, Su Y, Shang M, Hessel V, Luque R, Noel T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews, 2016, 45(1): 83–117

    Article  CAS  Google Scholar 

  28. Liu D, Jing Y, Wang K, Wang Y, Luo G. Reaction study of α-phase NaYF4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy. Nanoscale, 2019, 11(17): 8363–8371

    Article  CAS  Google Scholar 

  29. Liu D, Yan J, Wang K, Wang Y, Luo G. Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method. Nano Research, 2022, 15(2): 1199–1204

    Article  CAS  Google Scholar 

  30. Shang M, Noël T, Su Y, Hessel V. Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors. AIChE Journal, 2017, 63(2): 689–697

    Article  CAS  Google Scholar 

  31. Tanimu A, Jaenicke S, Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications. Chemical Engineering Journal, 2017, 327: 792–821

    Article  CAS  Google Scholar 

  32. Li Y, Wang K, Qin K, Wang T. Beckmann rearrangement reaction of cyclohexanone oxime in sub/supercritical water: byproduct and selectivity. RSC Advances, 2015, 5(32): 25365–25371

    Article  CAS  Google Scholar 

  33. Li B, Li R, Dorff P, McWilliams J C, Guinn R M, Guinness S M, Han L, Wang K, Yu S. Deprotection of N-Boc groups under continuous-flow high-temperature conditions. Journal of Organic Chemistry, 2019, 84(8): 4846–4855

    Article  CAS  Google Scholar 

  34. Polyzoidis A, Altenburg T, Schwarzer M, Loebbecke S, Kaskel S. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chemical Engineering Journal, 2016, 283: 971–977

    Article  CAS  Google Scholar 

  35. Sui J, Yan J, Wang K, Luo G. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Research, 2020, 13(10): 2837–2846

    Article  CAS  Google Scholar 

  36. Zhang H, Jin Q, Xu R, Yan L, Lin Z. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Frontiers of Chemical Science and Engineering, 2011, 5(2): 252–257

    Article  CAS  Google Scholar 

  37. Jin S H, Jung J H, Jeong S G, Kim J, Park T J, Lee C S. Microfluidic dual loops reactor for conducting a multistep reaction. Frontiers of Chemical Science and Engineering, 2018, 12(2): 239–246

    Article  CAS  Google Scholar 

  38. Shang H, Ye P, Yue Y, Wang T, Zhang W, Omar S, Wang J. Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor. Frontiers of Chemical Science and Engineering, 2019, 13(4): 744–758

    Article  Google Scholar 

  39. Lu S, Wang K. Kinetic study of TBD catalyzed delta-valerolactone polymerization using a gas-driven droplet flow reactor. Reaction Chemistry & Engineering, 2019, 4(7): 1189–1194

    Article  CAS  Google Scholar 

  40. Lin X, Wang K, Zhou B, Luo G. A microreactor-based research for the kinetics of polyvinyl butyral (PVB) synthesis reaction. Chemical Engineering Journal, 2020, 383: 123181

    Article  CAS  Google Scholar 

  41. Mansour M, Liu Z, Janiga G, Nigam K D, Sundmacher K, Thévenin D, Zähringer K. Numerical study of liquid-liquid mixing in helical pipes. Chemical Engineering Science, 2017, 172: 250–261

    Article  CAS  Google Scholar 

  42. Zahn D. On the role of water in amide hydrolysis. European Journal of Organic Chemistry, 2004, 2004(19): 4020–4023

    Article  Google Scholar 

  43. Schowen R L, Jayaraman H, Kershner L. Kinetic evidence for a two-step mechanism of amide hydrolysis. Tetrahedron Letters, 1966, 7(5): 497–500

    Article  Google Scholar 

  44. Barnett J W, O’Connor C. Evidence for a first order mechanism in amide hydrolysis. Journal of the Chemical Society. Chemical Communications, 1972(9): 525–525

  45. O’Connor C. Acidic and basic amide hydrolysis. Quarterly Review of the Chemical Society, 1970, 24(4): 553–564

    Article  Google Scholar 

  46. Slebocka-Tilk H, Bennet A J, Keillor J W, Brown R S, Guthrie J P, Jodhan A. Oxygen-18 exchange accompanying the basic hydrolysis of primary, secondary, and tertiary toluamides. The importance of amine leaving abilities from the anionic tetrahedral intermediate. Journal of the American Chemical Society, 1990, 112(23): 8507–8514

    Article  CAS  Google Scholar 

  47. Biechler S S, Taft R W Jr. The effect of structure on kinetics and mechanism of the alkaline hydrolysis of anilides. Journal of the American Chemical Society, 1957, 79(18): 4927–4935

    Article  CAS  Google Scholar 

  48. DeWolfe R H, Newcomb R C. Hydrolysis of formanilides in alkaline solutions. Journal of Organic Chemistry, 1971, 36(25): 3870–3878

    Article  CAS  Google Scholar 

  49. Bender M L, Thomas R J. The concurrent alkaline hydrolysis and isotopic oxygen exchange of a series of p-substituted acetanilides. Journal of the American Chemical Society, 1961, 83(20): 4183–4189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21991104) and the Shandong Province Major Science and Technology Innovation Project (Grant No. 2019JZZY020401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, P., Wang, K. & Luo, G. Continuous deacylation of amides in a high-temperature and high-pressure microreactor. Front. Chem. Sci. Eng. 16, 1818–1825 (2022). https://doi.org/10.1007/s11705-022-2182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2182-y

Keywords

Navigation