Skip to main content
Log in

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm−2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (⩾ 75 h) at an extremely high current density of 200 mA·cm−2. In contrast, the binary hydroxides present quick decay at 200 mA·cm−2 or even reduced current densities (150 and 100 mA·cm−2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. da Silva Veras T, Mozer T S, da Costa Rubim Messeder dos Santos D, da Silva César A. Hydrogen: trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 2017, 42(4): 2018–2033

    Article  CAS  Google Scholar 

  2. Kim J S, Kim B, Kim H, Kang K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018, 8(11): 1702774

    Article  Google Scholar 

  3. Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46(2): 337–365

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Sun Y, Qin Y, Zhang W, Wang L, Luo M, Yang H, Guo S. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Advanced Energy Materials, 2020, 10(11): 1903120

    Article  CAS  Google Scholar 

  5. Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155

    Article  CAS  PubMed  Google Scholar 

  6. Anantharaj S, Karthick K, Venkatesh M, Simha T V S V, Salunke A S, Ma L, Liang H, Kundu S. Enhancing electrocatalytic total water splitting at few layer Pt−NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39: 30–43

    Article  CAS  Google Scholar 

  7. Hu L, Li M, Wei X, Wang H, Wu Y, Wen J, Gu W, Zhu C. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chemical Engineering Journal, 2020, 398: 125605

    Article  CAS  Google Scholar 

  8. Fan K, Chen H, Ji Y, Huang H, Claesson P M, Daniel Q, Philippe B, Rensmo H, Li F, Luo Y, Sun L. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016, 7(1): 11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goncalves J M, Martins P R, Angnes L, Araki K. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. New Journal of Chemistry, 2020, 44(24): 9981–9997

    Article  CAS  Google Scholar 

  10. Bi Y, Cai Z, Zhou D, Tian Y, Zhang Q, Zhang Q, Kuang Y, Li Y, Sun X, Duan X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. Journal of Catalysis, 2018, 358: 100–107

    Article  CAS  Google Scholar 

  11. Wang Z, Liu W, Hu Y, Xu L, Guan M, Qiu J, Huang Y, Bao J, Li H. An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation. Inorganic Chemistry Frontiers, 2019, 6(7): 1890–1896

    Article  CAS  Google Scholar 

  12. Anantharaj S, Kundu S, Noda S. “The Fe effect”: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80: 105514

    Article  CAS  Google Scholar 

  13. Anantharaj S, Karthick K, Kundu S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism. Materials Today. Energy, 2017, 6: 1–26

    Article  Google Scholar 

  14. Nur Indah Sari F, Abdillah S, Ting J M. FeOOH-containing hydrated layered iron vanadate electrocatalyst for superior oxygen evolution reaction and efficient water splitting. Chemical Engineering Journal, 2021, 416: 129165

    Article  CAS  Google Scholar 

  15. Bao W, Xiao L, Zhang J, Deng Z, Yang C, Ai T, Wei X. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chemical Communications (Cambridge), 2020, 56(65): 9360–9693

    Article  CAS  Google Scholar 

  16. Fan K, Ji Y, Zou H, Zhang J, Zhu B, Chen H, Daniel Q, Luo Y, Yu J, Sun L. Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt. Angewandte Chemie International Edition, 2017, 56(12): 3289–3293

    Article  CAS  PubMed  Google Scholar 

  17. Sun H, Xu X, Song Y, Zhou W, Shao Z. Designing high-valence metal sites for electrochemical water splitting. Advanced Functional Materials, 2021, 31(16): 2009779

    Article  CAS  Google Scholar 

  18. Yu J, Yang F, Cheng G, Luo W. Construction of a hierarchical NiFe layered double hydroxide with a 3D mesoporous structure as an advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2018, 5(8): 1795–1799

    Article  CAS  Google Scholar 

  19. Zeng L, Yang L, Lu J, Jia J, Yu J, Deng Y, Shao M, Zhou W. One-step synthesis of Fe−Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chinese Chemical Letters, 2018, 29(12): 1875–1878

    Article  CAS  Google Scholar 

  20. Li P, Duan X, Kuang Y, Li Y, Zhang G, Liu W, Sun X. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Advanced Energy Materials, 2018, 8(15): 1703341

    Article  Google Scholar 

  21. Tang T, Jiang W J, Niu S, Liu N, Luo H, Chen Y Y, Jin S F, Gao F, Wan L J, Hu J S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328

    Article  CAS  PubMed  Google Scholar 

  22. Wang J X, Zhang Y, Capuano C B, Ayers K E. Ultralow chargetransfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts. Scientific Reports, 2015, 5(1): 12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals, 1983, 31(4): 305–311

    Article  CAS  Google Scholar 

  24. Forano C, Costantino U, Prévot V, Gueho C T. Developments in Clay Science. 2nd ed. Amsterdam: Elsevier, 2013: 745–782

    Google Scholar 

  25. Palapa N R, Saria Y, Taher T, Mohadi R, Lesbani A. Synthesis and characterization of Zn/Al, Zn/Fe, and Zn/Cr layered double hydroxides: effect of M3+ ions toward layer formation. Science and Technology Indonesia, 2019, 4(2): 36–39

    Article  Google Scholar 

  26. Liu Y, Wang Y Z. Preparation and characterization of layered double hydroxide with different metallic ions. Chemical Research and Application, 2009, 21(6): 883–887

    CAS  Google Scholar 

  27. Schwertmann U, Pfab G. Structural vanadium in synthetic geothite. Geochimica et Cosmochimica Acta, 1994, 58(20): 4349–4352

    Article  CAS  Google Scholar 

  28. Song Y, Song M, Liu P, Liu W, Yuan L, Hao X, Pei L, Xu B, Guo J, Sun Z. Fe-doping induced localized amorphization in ultrathin α-Ni(OH)2 nanomesh for superior oxygen evolution reaction catalysis. Journal of Materials Chemistry A, 2021, 9(25): 14372–14380

    Article  CAS  Google Scholar 

  29. Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small, 2020, 16(2): 1905779

    Article  CAS  Google Scholar 

  30. Nesbitt H W, Legrand D, Bancroft G M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 2000, 27(5): 357–366

    Article  CAS  Google Scholar 

  31. Feng Y, Li Z, Li S, Yang M, Ma R, Wang J. One stone two birds: vanadium doping as dual roles in self-reduced Pt clusters and accelerated water splitting. Journal of Energy Chemistry, 2022, 66: 493–501

    Article  CAS  Google Scholar 

  32. Leng K, Zhang C, Li X, Hou C, Sun Y. Iron-containing MIL-101(Cr) as highly active and stable heterogeneous catalysts for the benzylation of aromatics with benzyl chloride. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120(1): 345–357

    Article  CAS  Google Scholar 

  33. Silversmit G, Depla D, Poelman H, Marin G B, De Gryse R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004, 135(2–3): 167–175

    Article  CAS  Google Scholar 

  34. Wang J, Liao T, Wei Z, Sun J, Guo J, Sun Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods, 2021, 5(4): 2000988

    Article  CAS  Google Scholar 

  35. Yang Y, Dang L, Shearer M J, Sheng H, Li W, Chen J, Xiao P, Zhang Y, Hamers R J, Jin S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2018, 8(15): 1703189

    Article  Google Scholar 

  36. Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, García de Arquer F P, Dinh C T, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, De Luna P, Janmohamed A, Xin H L, Yang H, Vojvodic A, Sargent E H. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352(6283): 333–337

    Article  CAS  PubMed  Google Scholar 

  37. Bao J, Wang Z, Xie J, Xu L, Lei F, Guan M, Zhao Y, Huang Y, Li H. A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Communications (Cambridge), 2019, 55(24): 3521–3524

    Article  CAS  Google Scholar 

  38. Hu Y, Wang Z, Liu W, Xu L, Guan M, Huang Y, Zhao Y, Bao J, Li H M. Novel cobalt-iron-vanadium layered double hydroxide nanosheet arrays for superior water oxidation performance. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16828–16834

    Article  CAS  Google Scholar 

  39. Zhu Y X, Liu M, Hou G Y, Tang Y P, Wu L K. The release of metal ions induced surface reconstruction of layered double hydroxide electrocatalysts. Sustainable Energy & Fuels, 2021, 5(13): 3436–3444

    Article  CAS  Google Scholar 

  40. Anantharaj S, Kundu S, Noda S. Worrisome exaggeration of activity of electrocatalysts destined for steady-state water electrolysis by polarization curves from transient techniques. Journal of the Electrochemical Society, 2022, 169(1): 014508

    Article  Google Scholar 

  41. Anantharaj S, Ede S R, Karthick K, Sam Sankar S, Sangeetha K, Karthik P E, Kundu S. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018, 11(4): 744–771

    Article  CAS  Google Scholar 

  42. Zhang K, Zou R. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small, 2021, 17(37): 2100129

    Article  CAS  Google Scholar 

  43. Anantharaj S, Kundu S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Letters, 2019, 4(6): 1260–1264

    Article  CAS  Google Scholar 

  44. Anantharaj S, Karthik P E, Noda S. The significance of properly reporting turnover frequency in electrocatalysis research. Angewandte Chemie International Edition, 2021, 60(43): 23051–23067

    Article  CAS  PubMed  Google Scholar 

  45. Anantharaj S, Sugime H, Noda S. Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 408: 127275

    Article  CAS  Google Scholar 

  46. Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136(18): 6744–6753

    Article  CAS  PubMed  Google Scholar 

  47. Sun M, Ru X R, Zhai L F. In-situ fabrication of supported iron oxides from synthetic acid mine drainage: high catalytic activities and good stabilities towards electro-Fenton reaction. Applied Catalysis B: Environmental, 2015, 165: 103–110

    Article  CAS  Google Scholar 

  48. Bai J, Mei J, Liao T, Sun Q, Chen Z G, Sun Z. Molybdenum-promoted surface reconstruction in polymorphic cobalt for initiating rapid oxygen evolution. Advanced Energy Materials, 2022, 12(5): 2103247

    Article  CAS  Google Scholar 

  49. Dinh K N, Zheng P L, Dai Z F, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q Y. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14(8): 1703257

    Article  Google Scholar 

  50. Wang Z, Zeng S, Liu W, Wang X, Li Q, Zhao Z, Geng F. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(2): 1488–1495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 22176017 and 21871028), CAS “Light of West China Program” (Grant No. XAB2020YW16), Scientific Research Project of the Ningxia Higher Education Department of China (Grant No. NGY2020034), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 020-KF-40).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiqin Yao, Zhenglong Wu, Huifeng Li or Shulan Ma.

Electronic Supplementary Material

11705_2022_2179_MOESM1_ESM.pdf

Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Deng, R., Guo, S. et al. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction. Front. Chem. Sci. Eng. 17, 102–115 (2023). https://doi.org/10.1007/s11705-022-2179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2179-6

Keywords

Navigation