Skip to main content
Log in

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated. The synthesized materials were characterized by various physicochemical and spectroscopic techniques like scanning electron microscope-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis and n-butylamine acidity. The shape of catalysts particles plays an important role in its activity. The sulfonic acid functionalized mesoporous silica catalysts of spherical shape and the cube shape were assessed for catalytic activity in biodiesel production. The catalytic biodiesel production reaction over the catalysts were studied by esterification of free fatty acid, oleic acid with methanol. The effect of various reaction parameters such as catalyst concentration, acid/alcohol molar ratio, catalyst amount, reaction temperature and reaction time on catalytic activity were investigated to optimize the conditions for maximum conversion. It was sulfonated cubic shape mesoporous silica which exhibited better activity as compared to the spherical shape silica catalysts. Additionally, the catalyst was regenerated and reused up to three cycles without any significant loss in activity. The present catalysts exhibit superior performance in biodiesel production and it can be used for the several biodiesel feedstock’s that are rich in free fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang S, Yang Y, Kankala R K, Li B. Sustainability assessment of synfuels from biomass or coal: an insight on the economic and ecological burdens. Renewable Energy, 2018, 118: 870–878

    Article  CAS  Google Scholar 

  2. Demirbas A. Importance of biodiesel as transportation fuel. Energy Policy, 2007, 35(9): 4661–4670

    Article  Google Scholar 

  3. Demirbas A. Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 2009, 50(1): 14–34

    Article  CAS  Google Scholar 

  4. Chen B, Wang J, He T, Jie F, Chen B. Impact of biodiesel on engine oil quality: role of methyl oleate and performance of sulfonate detergent additive. Fuel, 2019, 244: 454–460

    Article  CAS  Google Scholar 

  5. Navaneeth P V, Suraj C K, Mehta P S, Anand K. Predicting the effect of biodiesel composition on the performance and emission of a compression ignition engine using a phenomenological model. Fuel, 2021, 293: 120453

    Article  CAS  Google Scholar 

  6. Jothiramalingam R, Wang M K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Industrial & Engineering Chemistry Research, 2009, 48(13): 6162–6172

    Article  CAS  Google Scholar 

  7. Kondaiah A, Sesha Rao Y, Satishkumar, Kamitkar N D, Jafar Ali Ibrahim S, Chandradass J, Kannan T T M. Influence of blends of castor seed biodiesel and diesel on engine characteristics. Materials Today: Proceedings, 2021, 45: 7043–7049

    CAS  Google Scholar 

  8. Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè A M. Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid-base catalyst. Applied Catalysis A, General, 2010, 378(2): 160–168

    Article  CAS  Google Scholar 

  9. Guo F, Peng Z G, Dai J Y, Xiu Z L. Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Processing Technology, 2010, 91(3): 322–328

    Article  CAS  Google Scholar 

  10. Boon-anuwat N, Kiatkittipong W, Aiouache F, Assabumrungrat S. Process design of continuous biodiesel production by reactive distillation: comparison between homogeneous and heterogeneous catalysts. Chemical Engineering and Processing, 2015, 92: 33–44

    Article  CAS  Google Scholar 

  11. Soltani S, Rashid U, Al-Resayes S I, Nehdi I A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: a review. Energy Conversion and Management, 2017, 141: 183–205

    Article  CAS  Google Scholar 

  12. Tan X, Sudarsanam P, Tan J, Wang A, Zhang H, Li H, Yang S. Sulfonic acid-functionalized heterogeneous catalytic materials for efficient biodiesel production: a review. Journal of Environmental Chemical Engineering, 2021, 9(1): 104719

    Article  CAS  Google Scholar 

  13. Patel A, Brahmkhatri V, Singh N. Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renewable Energy, 2013, 51: 227–233

    Article  CAS  Google Scholar 

  14. Brahmkhatri V, Patel A. 12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids. Applied Catalysis A, General, 2011, 403(1): 161–172

    Article  CAS  Google Scholar 

  15. Brahmkhatri V, Patel A. Biodiesel production by esterification of free fatty acids over 12-tungstophosphoric acid anchored to MCM-41. Industrial & Engineering Chemistry Research, 2011, 50(11): 6620–6628

    Article  CAS  Google Scholar 

  16. Mohammadi Ziarani G, Lashgari N, Badiei A. Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. Journal of Molecular Catalysis A Chemical, 2015, 397: 166–191

    Article  CAS  Google Scholar 

  17. Wang P, Zhao Y, Liu J. Versatile design and synthesis of mesoporous sulfonic acid catalysts. Science Bulletin, 2018, 63(4): 252–266

    Article  CAS  Google Scholar 

  18. Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale, 2020, 12(21): 11333–11363

    Article  CAS  PubMed  Google Scholar 

  19. Costa J A S, de Jesus R A, Santos D O, Neris J B, Figueiredo R T, Paranhos C M. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: a review. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259

    Article  CAS  Google Scholar 

  20. Hoang Thi T T, Cao V D, Nguyen T N Q, Hoang D T, Ngo V C, Nguyen D H. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering C, 2019, 99: 631–656

    Article  CAS  PubMed  Google Scholar 

  21. Kholafazad Kordasht H, Pazhuhi M, Pashazadeh-Panahi P, Hasanzadeh M, Shadjou N. Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: recent advances. Trends in Analytical Chemistry, 2020, 124: 115778

    Article  CAS  Google Scholar 

  22. Gañán J, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. 2-Mercaptopyrimidine-functionalized mesostructured silicas to develop electrochemical sensors for a rapid control of scopolamine in tea and herbal tea infusions. Microchemical Journal, 2020, 157: 104877

    Article  CAS  Google Scholar 

  23. Thushari I, Babel S. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology, 2018, 248: 199–203

    Article  CAS  PubMed  Google Scholar 

  24. Liu T, Li Z, Li W, Shi C, Wang Y. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresource Technology, 2013, 133: 618–621

    Article  CAS  PubMed  Google Scholar 

  25. Rafiee E, Mirnezami F. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application. Journal of Molecular Structure, 2017, 1130: 296–302

    Article  CAS  Google Scholar 

  26. Peixoto A F, Soliman M M A, Pinto T V, Silva S M, Costa P, Alegria E C B A, Freire C. Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass and Bioenergy, 2021, 145: 105936

    Article  CAS  Google Scholar 

  27. Zhang P, Wu H, Fan M, Sun W, Jiang P, Dong Y. Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production. Fuel, 2019, 235: 426–432

    Article  CAS  Google Scholar 

  28. Kasinathan P, Lang C, Gaigneaux E M, Jonas A M, Fernandes A E. Influence of site pairing in hydrophobic silica-supported sulfonic acid bifunctional catalysts. Langmuir, 2020, 36(46): 13743–13751

    Article  CAS  PubMed  Google Scholar 

  29. Viscardi R, Barbarossa V, Maggi R, Pancrazzi F. Effect of acidic MCM-41 mesoporous silica functionalized with sulfonic acid groups catalyst in conversion of methanol to dimethyl ether. Energy Reports, 2020, 6: 49–55

    Article  Google Scholar 

  30. Tai Z, Isaacs M A, Parlett C M A, Lee A F, Wilson K. High activity magnetic core-mesoporous shell sulfonic acid silica nanoparticles for carboxylic acid esterification. Catalysis Communications, 2017, 92: 56–60

    Article  CAS  Google Scholar 

  31. Usai E M, Sini M F, Meloni D, Solinas V, Salis A. Sulfonic acid-functionalized mesoporous silicas: microcalorimetric characterization and catalytic performance toward biodiesel synthesis. Microporous and Mesoporous Materials, 2013, 179: 54–62

    Article  CAS  Google Scholar 

  32. Tran T T V, Obpirompoo M, Kongparakul S, Karnjanakom S, Reubroycharoen P, Guan G, Chanlek N, Samart C. Glycerol valorization through production of di-glyceryl butyl ether with sulfonic acid functionalized KIT-6 catalyst. Carbon Resources Conversion, 2020, 3: 182–189

    Article  CAS  Google Scholar 

  33. Decarpigny C, Bleta R, Ponchel A, Monflier E. Oxidation of 2,5-diformfylfuran to 2,5-furandicarboxylic acid catalyzed by Candida antarctica lipase B immobilized in a cyclodextrin-templated mesoporous silica. The critical role of pore characteristics on the catalytic performance. Colloids and Surfaces. B, Biointerfaces, 2021, 200: 111606

    Article  CAS  PubMed  Google Scholar 

  34. Rahman S, Shah S, Santra C, Sen D, Sharma S, Pandey J K, Mazumder S, Chowdhury B. Controllable synthesis of niobium doped mesoporous silica materials with various morphologies and its activity for oxidative catalysis. Microporous and Mesoporous Materials, 2016, 226: 169–178

    Article  CAS  Google Scholar 

  35. Patel A, Brahmkhatri V. Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports. Fuel Processing Technology, 2013, 113: 141–149

    Article  CAS  Google Scholar 

  36. Wang X, Zhang Y, Luo W, Elzatahry A A, Cheng X, Alghamdi A, Abdullah A M, Deng Y, Zhao D. Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted Stöber method. Chemistry of Materials, 2016, 28(7): 2356–2362

    Article  CAS  Google Scholar 

  37. Ballistreri F P, Tomaselli G A, Toscano R M. Selective and mild oxidation of thiols to sulfonic acids by hydrogen peroxide catalyzed by methyltrioxorhenium. Tetrahedron Letters, 2008, 49(20): 3291–3293

    Article  CAS  Google Scholar 

  38. Brunauer S, Deming L S, Deming W E, Teller E. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 1940, 62(7): 1723–1732

    Article  CAS  Google Scholar 

  39. Cano-Serrano E, Campos-Martin J M, Fierro J L G. Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups. Chemical Communications, 2003, (2): 246–247

  40. Kruk M, Jaroniec M, Sayari A J L. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir, 1997, 13(23): 6267–6273

    Article  CAS  Google Scholar 

  41. Isaifan R J, Ntais S, Baranova E A. Particle size effect on catalytic activity of carbon-supported Pt nanoparticles for complete ethylene oxidation. Applied Catalysis A, General, 2013, 464–465: 87–94

    Article  CAS  Google Scholar 

  42. Hasan Z, Jun J W, Jhung S H. Sulfonic acid-functionalized MIL-101 (Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chemical Engineering Journal, 2015, 278: 265–271

    Article  CAS  Google Scholar 

  43. Yu H, Niu S, Lu C, Li J, Yang Y. Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel, 2017, 208: 101–110

    Article  CAS  Google Scholar 

  44. Nongbe M C, Ekou T, Ekou L, Yao K B, Le Grognec E, Felpin F X. Biodiesel production from palm oil using sulfonated graphene catalyst. Renewable Energy, 2017, 106: 135–141

    Article  CAS  Google Scholar 

  45. Niu S, Ning Y, Lu C, Han K, Yu H, Zhou Y. Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 2018, 163: 59–65

    Article  CAS  Google Scholar 

  46. Zhou Y, Ding H, Liu J, Parnas R S, Clearfield A, Xiao M, Meng Y, Sun L. Solid acid catalyst based on single-layer α-zirconium phosphate nanosheets for biodiesel production via esterification. Catalysts, 2018, 8(1): 1–17

    Article  CAS  Google Scholar 

  47. Chen Y, Cao Y, Suo Y, Zheng G P, Guan X X, Zheng X C. Mesoporous solid acid catalysts of 12-tungstosilicic acid anchored to SBA-15: characterization and catalytic properties for esterification of oleic acid with methanol. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51: 186–192

    Article  CAS  Google Scholar 

  48. Yang H, Song H, Zhang H, Chen P, Zhao Z. Esterification of citric acid with n-butanol over zirconium sulfate supported on molecular sieves. Journal of Molecular Catalysis A Chemical, 2014, 381: 54–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Jain University, Bangalore, India, for providing facilities. Varsha P. Brahmkhatri also acknowledges TARE-SERB.TAR/2018/000547. Nanomission project “SR/NM/NS-20/2014” CNMS, JAIN deemed to be University is acknowledged for SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha P. Brahmkhatri.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, V., Pandit, P., Rananaware, P. et al. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Front. Chem. Sci. Eng. 16, 1198–1210 (2022). https://doi.org/10.1007/s11705-021-2133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2133-z

Keywords

Navigation