Skip to main content
Log in

Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The effects of Zr doping on the existence of Cu and the catalytic performance of Ce0.7−xZrxCu0.3O2 for CO oxidation were investigated. The characterization results showed that all samples have a cubic structure, and a small amount of Zr doping facilitates Cu2+ ions entering the CeO2 lattice, but excessive Zr doping leads to the formation of surface CuO crystals again. Thus, the number of oxygen vacancies caused by the Cu2+ entering the lattice (e.g., Cu2+-□-Ce4+; □: oxygen vacancy), and the amount of reducible copper species caused by CuO crystals, varies with the Zr doping. Catalytic CO oxidation tests indicated that the oxygen vacancy and the reducible copper species were the adsorption and activation sites of O2 and CO, respectively, and the cooperative effects between them accounted for the high CO oxidation activity. Thus, the samples x = 0.1 and 0.3, which possessed the most oxygen vacancy or reducible copper species, showed the best activity for CO oxidation, with full CO conversion obtained at 110 °C. The catalyst is also stable and has good resistance to water during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang R, Wang J, Zhu X, Liu X, Liu H, Zhou Y, Dong S, La P, Yao J, Liu B. Phase-separated Ce-Co-O catalysts for CO oxidation. International Journal of Hydrogen Energy, 2020, 45(23): 12777–12786

    Article  CAS  Google Scholar 

  2. Wang S, Zhang Y, Zhu J, Tang D, Zhao Z, Yang X. Sol-Gel preparation of perovskite oxides using ethylene glycol and alcohol mixture as complexant and its catalytic performances for CO oxidation. ChemistrySelect, 2018, 3(43): 12250–12257

    Article  CAS  Google Scholar 

  3. Wang S, Xu X, Zhu J, Tang D, Zhao Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. Journal of Rare Earths, 2019, 37(9): 970–977

    Article  CAS  Google Scholar 

  4. Inomata Y, Albrecht K, Yamamoto K. Size-dependent oxidation state and CO oxidation activity oftin oxide clusters. ACS Catalysis, 2018, 8(1): 451–456

    Article  CAS  Google Scholar 

  5. Wang S, Xiao P, Xuelian X, Bi H, Liu X, Zhu J. Catalytic CO oxidation and CO + NO reduction conducted on La-Co-O composites: the synergistic effects between Co3O4 and LaCoO3. Catalysis Today, 2020, 376(15): 255–261

    Google Scholar 

  6. Almana N, Phivilay S P, Laveille P, Hedhili M N, Fornasiero P, Takanabe K, Basset J M. Design of a core-shell Pt-SiO2 catalyst in a reverse microemulsion system: distinctive kinetics on CO oxidation at low temperature. Journal of Catalysis, 2016, 340: 368–375

    Article  CAS  Google Scholar 

  7. Chen S, Zou H, Liu Z, Lin W. DRIFTS study of different gas adsorption for CO selective oxidation on Cu-Zr-Ce-O catalysts. Applied Surface Science, 2009, 255(15): 6963–6967

    Article  CAS  Google Scholar 

  8. Ye Q, Wang J, Zhao J, Yan L, Cheng S, Kang T, Dai H. Pt or Pd-doped Au/SnO2 catalysts: high activity for low-temperature CO oxidation. Catalysis Letters, 2010, 138(1): 56–61

    Article  CAS  Google Scholar 

  9. Chen S F, Li J P, Qian K, Xu W P, Lu Y, Huang W X, Yu S H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research, 2010, 3(4): 244–255

    Article  CAS  Google Scholar 

  10. Li N, Chen Q Y, Luo L F, Huang W X, Luo M F, Hu G S, Lu J Q. Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Applied Catalysis B: Environmental, 2013, 142–143: 523–532

    Article  Google Scholar 

  11. Renuka N K, Anas K, Aniz C U. Synthesis, characterisation and activity of SBA-16 supported oxidation catalysts for CO conversion. Chinese Journal of Catalysis, 2015, 36(8): 1237–1241

    Article  CAS  Google Scholar 

  12. Kang R, Wei X, Bin F, Wang Z, Qinglan H, Dou B. Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0.75Zr0.25O2δ catalyst. Applied Catalysis A, General, 2018, 565(5): 46–58

    Article  CAS  Google Scholar 

  13. Atzori L, Cutrufello M G, Meloni D, Onida B, Gazzoli D, Ardu A, Monaci R, Sini M F, Rombi E. Characterization and catalytic activity of soft-templated NiO-CeO2 mixed oxides for CO and CO2 co-methanation. Frontiers of Chemical Science and Engineering, 2021, 15(2): 251–268

    Article  Google Scholar 

  14. Li R, Yang Y, Sun N, Kuai L. Mesoporous Cu-Ce-Ox solid solutions from spray pyrolysis for superior low-temperature CO oxidation. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(68): 15586–15593

    CAS  Google Scholar 

  15. Desyatykh I V, Vedyagin A A, Mishakov I V, Shubin Y V. CO oxidation over fiberglasses with doped Cu-Ce-O catalytic layer prepared by surface combustion synthesis. Applied Surface Science, 2015, 349: 21–26

    Article  CAS  Google Scholar 

  16. AlKetbi M, Polychronopoulou K, Abi Jaoude M, Vasiliades M A, Sebastian V, Hinder S J, Baker M A, Zedan A F, Efstathiou A M. Cu-Ce-La-Ox as efficient CO oxidation catalysts: effect of Cu content. Applied Surface Science, 2020, 505: 144474

    Article  CAS  Google Scholar 

  17. Zhang X, Wang H, Wang Z, Qu Z. Adsorption and surface reaction pathway of NH3 selective catalytic oxidation over different Cu-Ce-Zr catalysts. Applied Surface Science, 2018, 447: 40–48

    Article  CAS  Google Scholar 

  18. Baneshi J, Haghighi M, Jodeiri N, Abdollahifar M, Ajamein H. Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production. Ceramics International, 2014, 40(9, Part A): 14177–14184

    Article  CAS  Google Scholar 

  19. Han Y, Wang Y, Ma T, Li W, Zhang J, Zhang M. Mechanistic understanding of Cu-based bimetallic catalysts. Frontiers of Chemical Science and Engineering, 2020, 14(5): 689–748

    Article  CAS  Google Scholar 

  20. Yu W, Zhou Q, Wang H, Liu Y, Chu W, Cai R, Yang W. Selective removal of CO from hydrocarbon-rich industrial off-gases over CeO2-supported metal oxides. Journal of Materials Science, 2020, 55(6): 2321–2332

    Article  CAS  Google Scholar 

  21. Liu X, Jia S, Yang M, Tang Y, Wen Y, Chu S, Wang J, Shan B, Chen R. Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nature Communications, 2020, 11(1): 4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cabello A P, Ulla M A, Zamaro J M. CeO2/CuOx nanostructured films for CO oxidation and CO oxidation in hydrogen-rich streams using a micro-structured reactor. Topics in Catalysis, 2019, 62(12): 931–940

    Article  CAS  Google Scholar 

  23. Pati R K, Lee I C, Hou S, Akhuemonkhan O, Gaskell K J, Wang Q, Frenkel A I, Chu D, Salamanca-Riba L G, Ehrman S H. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction. ACS Applied Materials & Interfaces, 2009, 1(11): 2624–2635

    Article  CAS  Google Scholar 

  24. Li S, Hao Q, Zhao R, Liu D, Duan H, Dou B. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chemical Engineering Journal, 2016, 285: 536–543

    Article  CAS  Google Scholar 

  25. Li K, Lyu T, He J, Jang B W L. Selective hydrogenation of acetylene over Pd/CeO2. Frontiers of Chemical Science and Engineering, 2020, 14(6): 929–936

    Article  CAS  Google Scholar 

  26. Vidal H, Kašpar J, Pijolat M, Colón G, Bernal S, Cordón A, Perrichon V, Fally F. Redox behavior of CeO2-ZrO2 mixed oxides. Applied Catalysis B: Environmental, 2000, 27(1): 49–63

    Article  CAS  Google Scholar 

  27. Martínez-Arias A, Fernández-García M, Gálvez O, Coronado J M, Anderson J A, Conesa J C, Soria J, Munuera G. Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. Journal of Catalysis, 2000, 195 (1): 207–216

    Article  Google Scholar 

  28. Vikanova K, Redina E, Kapustin G, Nissenbaum V, Mishin I, Kostyukhin E, Kustov L. Template-free one-step synthesis of micro-mesoporous CeO2-ZrO2 mixed oxides with a high surface area for selective hydrogenation. Ceramics International, 2020, 46(9): 13980–13988

    Article  CAS  Google Scholar 

  29. Shang H, Zhang X, Xu J, Han Y. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation. Frontiers of Chemical Science and Engineering, 2017, 11(4): 603–612

    Article  CAS  Google Scholar 

  30. Qi L, Yu Q, Dai Y, Tang C, Liu L, Zhang H, Gao F, Dong L, Chen Y. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Applied Catalysis B: Environmental, 2012, 119–120: 308–320

    Article  Google Scholar 

  31. Cecilia J A, Arango-Díaz A, Rico-Pérez V, Bueno-López A, Rodríguez-Castellón E. The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO-CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catalysis Today, 2015, 253: 115–125

    Article  CAS  Google Scholar 

  32. Reyes-Carmona Á, Arango-Díaz A, Moretti E, Talon A, Storaro L, Lenarda M, Jiménez-López A, Rodríguez-Castellón E. CuO/CeO2 supported on Zr doped SBA-15 as catalysts for preferential CO oxidation (CO-PROX). Journal of Power Sources, 2011, 196(9): 4382–4387

    Article  CAS  Google Scholar 

  33. Manzoli M, Monte R D, Boccuzzi F, Coluccia S, Kašpar J. CO oxidation over CuOx-CeO2-ZrO2 catalysts: transient behaviour and role of copper clusters in contact with ceria. Applied Catalysis B: Environmental, 2005, 61(3): 192–205

    Article  CAS  Google Scholar 

  34. Chiou J Y Z, Lai C L, Yu S W, Huang H H, Chuang C L, Wang C B. Effect of Co, Fe and Rh addition on coke deposition over Ni/Ce0.5Zr0.5O2 catalysts for steam reforming of ethanol. International Journal of Hydrogen Energy, 2014, 39(35): 20689–20699

    Article  CAS  Google Scholar 

  35. Wang Y, Zheng Y, Wang Y, Li K, Wang Y, Jiang L, Zhu X, Wei Y, Wang H. Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane. Applied Surface Science, 2019, 481: 151–160

    Article  CAS  Google Scholar 

  36. Zhao Y, Chen K, Zou Q, Fang J, Zhu S, He S, Lu J, Luo Y. Insights into the essential roles of tin and chloride species within Cu-CeO2 based catalysts for CO preferential oxidation in H2-rich stream. Journal of Power Sources, 2021, 484: 229181

    Article  CAS  Google Scholar 

  37. Bo L, Sun S. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392

    Article  CAS  Google Scholar 

  38. Ayastuy J L, Gurbani A, González-Marcos M P, Gutiérrez-Ortiz M A. Selective CO oxidation in H2 streams on CuO/CexZr1xO2 catalysts: correlation betweenactivityandlowtemperature reducibility. International Journal of Hydrogen Energy, 2012, 37 (2): 1993–2006

    Article  CAS  Google Scholar 

  39. Bera P, Hornés A, Cámara A L, Martínez Arias A. DRIFTS-MS studies of preferential oxidation of CO in H2 rich stream over (CuO)0.7(CeO2)0.3 and (Cu0.9M0.1O)0.7(CeO2)0.3 (M = Co, Zn and Sn) catalysts. Catalysis Today, 2010, 155(3): 184–191

    Article  CAS  Google Scholar 

  40. Yao H C, Yao Y F Y. Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265

    Article  CAS  Google Scholar 

  41. Kang R, Wei X, Bin F, Wang Z, Hao Q, Dou B. Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0.75Zr0.25O2 δ catalyst. Applied Catalysis A, General, 2018, 565: 46–58

    Article  CAS  Google Scholar 

  42. Burroughs P, Hamnett A, Orchard A F, Thornton G. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 1976, 17: 1686–1698

    Article  Google Scholar 

  43. Luo M F, Zheng X M, Laitinen R, Ugalde M, Román P, Lezama L, Rojo T. Redox behaviour of CeO2 and Ce0.5Zr0.5O2 supported CuO catalysts for CO oxidation. Acta Chemica Scandinavica. Series A: Physical and Inorganic Chemistry, 1998, 52: 1183–1187

    CAS  Google Scholar 

  44. Liu C, Xian H, Jiang Z, Wang L, Zhang J, Zheng L, Tan Y, Li X. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Applied Catalysis B: Environmental, 2015, 176–177: 542–552

    Article  Google Scholar 

  45. Liu L, Yao Z, Liu B, Dong L. Correlation of structural characteristics with catalytic performance of CuO/CexZr1 xO2 catalysts for NO reduction by CO. Journal of Catalysis, 2010, 275 (1): 45–60

    Article  CAS  Google Scholar 

  46. Chen A, Yu X, Zhou Y, Miao S, Li Y, Kuld S, Sehested J, Liu J, Aoki T, Hong S, et al. Structure of the catalytically active copper-ceria interfacial perimeter. Nature Catalysis, 2019, 2(4): 334–341

    Article  CAS  Google Scholar 

  47. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W. CuO/CeO2 catalysts: redox features and catalytic behaviors. Applied Catalysis A, General, 2005, 288(1): 116–125

    Article  CAS  Google Scholar 

  48. Liu X, Wang K, Zhou Y, Tang X, Zhu X, Zhang R, Zhang X, Jiang X, Liu B. In-situ fabrication of noble metal modified (Ce, Zr)O2 δ monolithic catalysts for CO oxidation. Applied Surface Science, 2019, 483(31): 721–729

    Article  CAS  Google Scholar 

  49. Liu X, Wang K, Zhou Y, Zhang X, Tang X, Ren P, Jiang X, Liu B. In-situ fabrication of Ce-rich CeO2 nanocatalyst for efficient CO oxidation. Journal of Alloys and Compounds, 2019, 792(5): 644–651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided by the following organisations is gratefully acknowledged: the National Natural Science Foundation of China (Grant No. 21976141); the Central Committee Guides Local Science and Technology Development Special Project of Hubei Province (Grant No. 2019ZYYD073); the Outstanding Young and Middle-aged Scientific and Technological Innovation Team of the Education Department of Hubei Province (Grant No. T2020011); and the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing (Grant No. STRZ2020003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjiang Zhu or Xinying Liu.

Electronic Supplementary Material

11705_2021_2106_MOESM1_ESM.pdf

Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xu, X., Xiao, P. et al. Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation. Front. Chem. Sci. Eng. 15, 1524–1536 (2021). https://doi.org/10.1007/s11705-021-2106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2106-2

Keywords

Navigation