Skip to main content

Hollow carbon spheres and their noble metal-free hybrids in catalysis

Abstract

Hollow carbon spheres have garnered great interest owing to their high surface area, large surface-tovolume ratio and reduced transmission lengths. Herein, we overview hollow carbon sphere-based materials and their noble metal-free hybrids in catalysis. Firstly, we summarize the key fabrication techniques for various kinds of hollow carbon spheres, with a particular emphasis on controlling pore structure and surface morphology, and then heterogeneous doping as well as their metal-free/ containing hybrids are presented; next, possible applications for non-noble metal/hollow carbon sphere hybrids in the area of energy-related catalysis, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, water splitting, rechargeable Zn-air batteries and pollutant degradation are discussed; finally, we introduce the various challenges and opportunities offered by hollow carbon spheres from the perspective of synthesis and catalysis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ding J, Zhang H, Zhou H, Feng J, Zheng X, Zhong C, Paek E, Hu W, Mitlin D. Sulfur-grafted hollow carbon spheres for potassiumion battery anodes. Advanced Materials, 2019, 31(30): 1900429

    Google Scholar 

  2. 2.

    Zhang Y, He Z, Wang H, Qi L, Liu G, Zhang X. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Frontiers of Chemical Science and Engineering, 2015, 9(5): 770–783

    CAS  Google Scholar 

  3. 3.

    Cheng Y, Li Z, Li Y, Dai S, Ji G, Zhao H, Cao J, Du Y. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon, 2018, 127: 643–652

    CAS  Google Scholar 

  4. 4.

    Han Y, Wang Y G, Chen W, Xu R, Zheng L, Zhang J, Luo J, Shen R A, Zhu Y, Cheong W C, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. Journal of the American Chemical Society, 2017, 139(48): 17269–17272

    CAS  PubMed  Google Scholar 

  5. 5.

    Xu M, Liu Y, Yu Q, Feng S, Zhou L, Mai L. Phenylenediamineformaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors. Chinese Chemical Letters, 2021, 32(1): 184–189

    CAS  Google Scholar 

  6. 6.

    Yan C, Meng N, Lyu W, Li Y, Wang L, Liao Y. Hierarchical porous hollow carbon spheres derived from spirofluorene-and aniline-linked conjugated microporous polymer for phase change energy storage. Carbon, 2021, 176: 178–187

    CAS  Google Scholar 

  7. 7.

    Du J, Chen A, Liu L, Li B, Zhang Y. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage. Carbon, 2020, 160: 265–272

    CAS  Google Scholar 

  8. 8.

    Pei F, An T, Zang J, Zhao X, Fang X, Zheng M, Dong Q, Zheng N. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Advanced Energy Materials, 2016, 6(8): 1502539

    Google Scholar 

  9. 9.

    Ye C, Zhang L, Guo C, Li D, Vasileff A, Wang H, Qiao S Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Advanced Functional Materials, 2017, 27(33): 1702524

    Google Scholar 

  10. 10.

    Niu H, Zhang Y, Liu Y, Luo B, Xin N, Shi W. MOFs-derived Co9S8-embedded graphene/hollow carbon spheres film with macroporous frameworks for hybrid supercapacitors with superior volumetric energy density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8503–8509

    CAS  Google Scholar 

  11. 11.

    Zheng W, Yang J, Chen H, Hou Y, Wang Q, Gu M, He F, Xia Y, Xia Z, Li Z, et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Advanced Functional Materials, 2019, 30(4): 1907658

    Google Scholar 

  12. 12.

    Lei C, Zheng Q, Cheng F, Hou Y, Yang B, Li Z, Wen Z, Lei L, Chai G, Feng X. High-performance metal-free nanosheets array electrocatalyst for oxygen evolution reaction in acid. Advanced Functional Materials, 2020, 30(31): 2003000

    CAS  Google Scholar 

  13. 13.

    Wang T, Sang X, Zheng W, Yang B, Yao S, Lei C, Li Z, He Q, Lu J, Lei L, et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Advanced Materials, 2020, 32(29): 2002430

    CAS  Google Scholar 

  14. 14.

    Li Y, Li J, Huang J, Chen J, Kong Y, Yang B, Li Z, Lei L, Chai G, Wen Z, et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angewandte Chemie International Edition, 2021, 60(16): 9078–9085

    CAS  PubMed  Google Scholar 

  15. 15.

    Wang X, Wang Y, Sang X, Zheng W, Zhang S, Shuai L, Yang B, Li Z, Chen J, Lei L, et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angewandte Chemie International Edition, 2021, 60(8): 4192–4198

    CAS  PubMed  Google Scholar 

  16. 16.

    Zheng W, Wang Y, Shuai L, Wang X, He F, Lei C, Li Z, Yang B, Lei L, Yuan C, et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Advanced Functional Materials, 2021, 31(15): 2008146

    CAS  Google Scholar 

  17. 17.

    Li S, Pasc A, Fierro V, Celzard A. Hollow carbon spheres, synthesis and applications.a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(33): 12686–12713

    CAS  Google Scholar 

  18. 18.

    Liu T, Zhang L, Cheng B, Yu J. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Advanced Energy Materials, 2019, 9(17): 1803900

    Google Scholar 

  19. 19.

    Yang J, Han H, Repich H, Zhi R, Qu C, Kong L, Kaskel S, Wang H, Xu F, Li H. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries. New Carbon Materials, 2020, 35(6): 630–645

    Google Scholar 

  20. 20.

    Jiang J, Nie G, Nie P, Li Z, Pan Z, Kou Z, Dou H, Zhang X, Wang J. Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Letters, 2020, 12(1): 183

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhang Y, Sun K, Zhan L, Wang Y, Ling L. N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Applied Surface Science, 2018, 427: 823–829

    CAS  Google Scholar 

  22. 22.

    Zhang Y, Ma Q, Wang S, Liu X, Li L. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano, 2018, 12(5): 4824–4834

    CAS  PubMed  Google Scholar 

  23. 23.

    Zhang S L, Guan B Y, Lou X W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small, 2019, 15(13): 1805324

    Google Scholar 

  24. 24.

    Du J, Liu L, Yu Y, Hu Z, Zhang Y, Liu B, Chen A. Tuning confined nanospace for preparation of N-doped hollow carbon spheres for high performance supercapacitors. ChemSusChem, 2019, 12(1): 303–309

    CAS  PubMed  Google Scholar 

  25. 25.

    Hassan M, Qiu W, Song X, Mao Q, Ren S, Hao C. Supercapacitive and ORR performances of nitrogen-doped hollow carbon spheres pyrolyzed from polystyrene@polypyrrole-polyaniline. Journal of Alloys and Compounds, 2020, 818: 152890

    CAS  Google Scholar 

  26. 26.

    Fan D, Wei B, Wu R, Zhou J, Zhou C. Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties. Journal of Materials Science, 2021, 56(11): 6830–6844

    CAS  Google Scholar 

  27. 27.

    Fang X, Liu S, Zang J, Xu C, Zheng MS, Dong Q F, Sun D, Zheng N. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures. Nanoscale, 2013, 5(15): 6908–6916

    CAS  PubMed  Google Scholar 

  28. 28.

    Liu M, Yu Y, Liu B, Liu L, Lv H, Chen A. PVP-assisted synthesis of nitrogen-doped hollow carbon spheres for supercapacitors. Journal of Alloys and Compounds, 2018, 768: 42–48

    CAS  Google Scholar 

  29. 29.

    Bu L, Kuai X, Zhu W, Kai X, Lu T, Zhao J, Gao L. Nitrogen-doped double-shell hollow carbon spheres for fast and stable sodium ion storage. Electrochimica Acta, 2020, 356: 136804

    CAS  Google Scholar 

  30. 30.

    Han J, Xu G, Ding B, Pan J, Dou H, MacFarlane D R. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(15): 5352–5357

    CAS  Google Scholar 

  31. 31.

    Gil-Herrera L K, Blanco A, Juarez B H, Lopez C. Seeded synthesis of monodisperse core-shell and hollow carbon spheres. Small, 2016, 12(32): 4357–4362

    CAS  PubMed  Google Scholar 

  32. 32.

    Yang X, Li Y, Zhang P, Sun L, Ren X, Mi H. Hierarchical hollow carbon spheres: novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon, 2020, 157: 70–79

    CAS  Google Scholar 

  33. 33.

    He M, Jia J, Sun Q, Zhang W. Hollow N-doped carbon sphere synthesized by MOF as superior oxygen electrocatalyst for Li-O2 batteries. International Journal of Energy Research, 2020, 45(5): 7120–7128

    Google Scholar 

  34. 34.

    Liu L, Xu S D, Yu Q, Wang F Y, Zhu H L, Zhang R L, Liu X. Nitrogen-doped hollow carbon spheres with a wrinkled surface: their one-pot carbonization synthesis and supercapacitor properties. Chemical Communications, 2016, 52(78): 11693–11696

    CAS  PubMed  Google Scholar 

  35. 35.

    Liu F, Yuan R L, Zhang N, Ke C C, Ma S X, Zhang R L, Liu L. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors. Applied Surface Science, 2018, 437: 271–280

    CAS  Google Scholar 

  36. 36.

    He X, Sun H, Zhu M, Yaseen M, Liao D, Cui X, Guan H, Tong Z, Zhao Z. N-Doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and ‘useful’ template of CaCO3 for VOC fast adsorption and small peptide enrichment. Chemical Communications, 2017, 53(24): 3442–3445

    CAS  PubMed  Google Scholar 

  37. 37.

    Guo H, Ding B, Wang J, Zhang Y, Hao X, Wu L, An Y, Dou H, Zhang X. Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon, 2018, 136: 204–210

    CAS  Google Scholar 

  38. 38.

    Du W,Wang X, Zhan J, Sun X, Kang L, Jiang F, Zhang X, Shao Q, Dong M, Liu H, et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 296: 907–915

    CAS  Google Scholar 

  39. 39.

    Tang Y, Wang X, Chen J, Wang X, Wang D, Mao Z. Templated transformation of g-C3N4 nanosheets into nitrogen-doped hollow carbon sphere with tunable nitrogen-doping properties for application in Li-ions batteries. Carbon, 2020, 168: 458–467

    CAS  Google Scholar 

  40. 40.

    Zhang D, Shen S, Xiao X, Mao D, Yan B. Nitrogen-doped hollow carbon spheres with tunable shell thickness for high-performance supercapacitors. RSC Advances, 2020, 10(44): 26546–26552

    CAS  Google Scholar 

  41. 41.

    Xu T, Wang Q, Zhang J, Xie X, Xia B. Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(22): 19959-19967

    CAS  Google Scholar 

  42. 42.

    Yang Z C, Zhang Y, Kong J H, Wong S Y, Li X, Wang J. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chemistry of Materials, 2013, 25(5): 704–710

    CAS  Google Scholar 

  43. 43.

    Li W, Li B, Shen M, Gao Q, Hou J. Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogendoped hollow carbon spheres for high-performance supercapacitors. Chemical Engineering Journal, 2020, 384: 123309

    CAS  Google Scholar 

  44. 44.

    Sun H, Zhu Y, Yang B, Wang Y, Wu Y, Du J. Template-free fabrication of nitrogen-doped hollow carbon spheres for highperformance supercapacitors based on a scalable homopolymer vesicle. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(31): 12088–12097

    CAS  Google Scholar 

  45. 45.

    Huang X, Zhang T, Asefa T. Hollow mesoporous carbon microparticles and micromotors with single holes templated by colloidal silica-assisted gas bubbles. Small, 2017, 13(26): 1700256

    Google Scholar 

  46. 46.

    Liu X, Song P, Hou J, Wang B, Xu F, Zhang X. Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2797–2805

    CAS  Google Scholar 

  47. 47.

    Liu D, Xue N, Wei L, Zhang Y, Qin Z, Li X, Binks B P, Yang H. Surfactant assembly within pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres. Angewandte Chemie International Edition, 2018, 57(34): 10899–10904

    CAS  PubMed  Google Scholar 

  48. 48.

    Chen M, Su Z, Liu Y, Pan Y, Zhang Y, Hu M, Ma Q, Zhou Q, Long D. Self-propelled nanoemulsion assembly of organosilane to the synthesis of high-surface-area hollow carbon spheres for enhanced energy storage. Chemical Engineering Journal, 2020, 400: 124973

    CAS  Google Scholar 

  49. 49.

    Wang K, Huang L, Razzaque S, Jin S, Tan B. Fabrication of hollow microporous carbon spheres from hyper-crosslinked microporous polymers. Small, 2016, 12(23): 3134–3142

    CAS  PubMed  Google Scholar 

  50. 50.

    Wang S, Sun W, Yang D S, Yang F. Conversion of soybean waste to sub-micron porous-hollow carbon spheres for supercapacitor via a reagent and template-free route. Materials Today. Energy, 2019, 13: 50–55

    Google Scholar 

  51. 51.

    Yang Y, Jin S, Zhang Z, Du Z, Liu H, Yang J, Xu H, Ji H. Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(16): 14180–14186

    CAS  Google Scholar 

  52. 52.

    Shang M, Zhang J, Liu X, Liu Y, Guo S, Yu S, Filatov S, Yi X N. S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Applied Surface Science, 2021, 542: 148697

    CAS  Google Scholar 

  53. 53.

    Zhang L, Liu L, Liu M, Yu Y, Hu Z, Liu B, Lv H, Chen A. Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method. Journal of Alloys and Compounds, 2019, 778: 294–301

    CAS  Google Scholar 

  54. 54.

    Zhou J, Sun Z, Chen M, Wang J, Qiao W, Long D, Ling L. Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties. Advanced Functional Materials, 2016, 26(29): 5368–5375

    CAS  Google Scholar 

  55. 55.

    Guan B Y, Zhang S L, Lou X W D. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angewandte Chemie International Edition, 2018, 57(21): 6176–6180

    CAS  PubMed  Google Scholar 

  56. 56.

    Du J, Liu L,Wu H, Lv H, Chen A. Tunable N-doped hollow carbon spheres induced by an ionic liquid for energy storage applications. Materials Chemistry Frontiers, 2020, 5(2): 843–850

    Google Scholar 

  57. 57.

    Liu P, Liu W, Huang Y, Li P, Yan J, Liu K. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Znion energy storage. Energy Storage Materials, 2020, 25: 858–865

    CAS  Google Scholar 

  58. 58.

    Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6(1): 7221

    PubMed  Google Scholar 

  59. 59.

    Tang J, Liu J, Salunkhe R R, Wang T, Yamauchi Y. Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chemical Communications, 2016, 52(3): 505–508

    CAS  PubMed  Google Scholar 

  60. 60.

    Fang M, Chen Z, Tian Q, Cao Y, Wang C, Liu Y, Fu J, Zhang J, Zhu L, Yang C, Chen J, Xu Q. Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance. Applied Surface Science, 2017, 425: 69–76

    CAS  Google Scholar 

  61. 61.

    Qiao Z A, Guo B, Binder A J, Chen J, Veith GM, Dai S. Controlled synthesis of mesoporous carbon nanostructures via a “silicaassisted” strategy. Nano Letters, 2013, 13(1): 207–212

    CAS  PubMed  Google Scholar 

  62. 62.

    Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano, 2016, 10(4): 4579–4586

    CAS  PubMed  Google Scholar 

  63. 63.

    Cheng Y, Zhao H, Zhao Y, Cao J, Zheng J, Ji G. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon, 2020, 161: 870–879

    CAS  Google Scholar 

  64. 64.

    Zhang N, Liu F, Xu S D, Wang F Y, Yu Q, Liu L. Nitrogen-phosphorus co-doped hollow carbon microspheres with hierarchical micro-meso-macroporous shells as efficient electrodes for supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22631–22640

    CAS  Google Scholar 

  65. 65.

    Du J, Zhang Y, Wu H, Hou S, Chen A. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors. Carbon, 2020, 156: 523–528

    CAS  Google Scholar 

  66. 66.

    Shang Y, Hu X, Li X, Cai S, Liang G, Zhao J, Zheng C, Sun X. A facile synthesis of nitrogen-doped hierarchical porous carbon with hollow sphere structure for high-performance supercapacitors. Journal of Materials Science, 2019, 54(19): 12747–12757

    CAS  Google Scholar 

  67. 67.

    Wang C, Wang F, Liu Z, Zhao Y, Liu Y, Yue Q, Zhu H, Deng Y, Wu Y, Zhao D. N-doped carbon hollow microspheres for metalfree quasi-solid-state full sodium-ion capacitors. Nano Energy, 2017, 41: 674–680

    CAS  Google Scholar 

  68. 68.

    Tetana Z, Mhlanga S, Coville N. Chemical vapour deposition syntheses and characterization of boron-doped hollow carbon spheres. Diamond and Related Materials, 2017, 74: 70–80

    CAS  Google Scholar 

  69. 69.

    Ravat V, Nongwe I, Meijboom R, Bepete G, Coville N J. Pd on boron-doped hollow carbon spheres-PdO particle size and support effects. Journal of Catalysis, 2013, 305: 36–45

    CAS  Google Scholar 

  70. 70.

    Wu J, Jin C, Yang Z, Tian J, Yang R. Synthesis of phosphorusdoped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015, 82: 562–571

    CAS  Google Scholar 

  71. 71.

    Ni D, Sun W, Wang Z, Bai Y, Lei H, Lai X, Sun K. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Advanced Energy Materials, 2019, 9(19): 1900036

    Google Scholar 

  72. 72.

    Ke C C, Zhang N, Liu F, Yu Q, Wang F Y, Liu L, Zhang R L, Liu X, Zeng R C. Deflated balloon-like nitrogen-rich sulfur-containing hierarchical porous carbons for high-rate supercapacitors. Applied Surface Science, 2019, 484: 716–725

    CAS  Google Scholar 

  73. 73.

    Lv B, Li P, Liu Y, Lin S, Gao B, Lin B. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes. Applied Surface Science, 2018, 437: 169–175

    CAS  Google Scholar 

  74. 74.

    Wang H, Lan J L, Yuan H, Luo S, Huang Y, Yu Y, Cai Q, Yang X. Chemical grafting-derived N,P co-doped hollow microporous carbon spheres for high-performance sodium-ion battery anodes. Applied Surface Science, 2020, 518: 146221

    CAS  Google Scholar 

  75. 75.

    Song L, Xin S, Xu D W, Li H Q, Cong H P, Yu S H. Graphene-wrapped graphitic carbon hollow spheres: bioinspired synthesis and applications in batteries and supercapacitors. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2016, 2(6): 540–546

    CAS  Google Scholar 

  76. 76.

    Wang H, Shi L, Yan T, Zhang J, Zhong Q, Zhang D. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(13): 4739–4750

    CAS  Google Scholar 

  77. 77.

    Shen Z, Du J, Mo Y, Chen A. Nanocomposites of reduced graphene oxide modified with mesoporous carbon layers anchored by hollow carbon spheres for energy storage. Carbon, 2021, 173: 22–30

    CAS  Google Scholar 

  78. 78.

    Li M, Zhang Y, Yang L, Liu Y, Yao J. Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochimica Acta, 2015, 166: 310–319

    CAS  Google Scholar 

  79. 79.

    Dong D, Guo H, Li G, Yan L, Zhang X, Song W. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy, 2017, 39: 470–477

    CAS  Google Scholar 

  80. 80.

    Wang Q, Yan J, Wang Y, Ning G, Fan Z, Wei T, Cheng J, Zhang M, Jing X. Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon, 2013, 52: 209–218

    CAS  Google Scholar 

  81. 81.

    Chen Z, Ye S, Evans S D, Ge Y, Zhu Z, Tu Y, Yang X. Confined assembly of hollow carbon spheres in carbonaceous nanotube: a spheres-in-tube carbon nanostructure with hierarchical porosity for high-performance supercapacitor. Small, 2018, 14(19): 1704015

    Google Scholar 

  82. 82.

    Peng Z, Wang H, Zhou L, Wang Y, Gao J, Liu G, Redfern S A, Feng X, Lu S, Li B, Liu Z. Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(12): 6676–6685

    CAS  Google Scholar 

  83. 83.

    Shen J, Wu H, Sun W, Qiao J, Cai H, Wang Z, Sun K. In-situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries. Chemical Engineering Journal, 2019, 358: 340–350

    CAS  Google Scholar 

  84. 84.

    Ma S, Wang L, Wang Y, Zuo P, He M, Zhang H, Ma L, Wu T, Yin G. Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon, 2019, 143: 878–889

    CAS  Google Scholar 

  85. 85.

    Yang G, Kuwahara Y, Masuda S, Mori K, Louis C, Yamashita H. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO2 to formate. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(8): 4437–4446

    CAS  Google Scholar 

  86. 86.

    Yang G, Kuwahara Y, Mori K, Louis C, Yamashita H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Applied Catalysis B: Environmental, 2021, 283: 119628

    CAS  Google Scholar 

  87. 87.

    Ma Y, Luo S, Tian M, Lu J, Peng Y, Desmond C, Liu Q, Li Q, Min Y, Xu Q, Chen S. Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2020, 450: 227659

    CAS  Google Scholar 

  88. 88.

    Qin L, Ru R, Mao J, Meng Q, Fan Z, Li X, Zhang G. Assembly of MOFs/polymer hydrogel derived Fe3O4-CuO@hollow carbon spheres for photochemical oxidation: freezing replacement for structural adjustment. Applied Catalysis B: Environmental, 2020, 269: 118754

    CAS  Google Scholar 

  89. 89.

    Wang J, Zeng H C. Hybrid OER electrocatalyst combining mesoporous hollow spheres of N, P-doped carbon with ultrafine Co2NiOx. ACS Applied Materials & Interfaces, 2020, 12(45): 50324–50332

    CAS  Google Scholar 

  90. 90.

    Liu T, Zhang L, You W, Yu J. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small, 2018, 14(12): 1702407

    Google Scholar 

  91. 91.

    Li Y, Huang H, Chen S, Yu X, Wang C, Ma T. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Research, 2019, 12(11): 2774–2780

    CAS  Google Scholar 

  92. 92.

    Hao R, Ren J T, Lv X W, Li W, Liu Y P, Yuan Z Y. N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2020, 49: 14–21

    Google Scholar 

  93. 93.

    Wang B, Ye Y, Xu L, Quan Y, Wei W, Zhu W, Li H, Xia J. Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-Doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable Zinc-air batteries. Advanced Functional Materials, 2020, 30(51): 2005834

    CAS  Google Scholar 

  94. 94.

    Pang Y, Wang K, Xie H, Sun Y, Titirici M M, Chai G L. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catalysis, 2020, 10(14): 7434–7442

    CAS  Google Scholar 

  95. 95.

    Zhao H, Zhu Y P, Ge L, Yuan Z Y. Nitrogen and sulfur co-doped mesoporous hollow carbon microspheres for highly efficient oxygen reduction electrocatalysts. International Journal of Hydrogen Energy, 2017, 42(30): 19010–19018

    CAS  Google Scholar 

  96. 96.

    Lei C, Wang Y, Hou Y, Liu P, Yang J, Zhang T, Zhuang X, Chen M, Yang B, Lei L. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy & Environmental Science, 2019, 12(1): 149–156

    CAS  Google Scholar 

  97. 97.

    Zhao H, Yuan Z Y. Design strategies of non-noble metal-based electrocatalysts for two-electron oxygen reduction to hydrogen peroxide. ChemSusChem, 2021, 14(7): 1616–1633

    CAS  PubMed  Google Scholar 

  98. 98.

    Zhao H, Weng C C, Ren J T, Ge L, Liu Y P, Yuan Z Y. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts. Chinese Journal of Catalysis, 2020, 41(2): 259–267

    CAS  Google Scholar 

  99. 99.

    Zhang C, Lu C, Bi S, Hou Y, Zhang F, Cai M, He Y, Paasch S, Feng X, Brunner E, et al. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12(3): 346–357

    CAS  Google Scholar 

  100. 100.

    Zeng K, Zheng X, Li C, Yan J, Tian J H, Jin C, Strasser P, Yang R. Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production. Advanced Functional Materials, 2020, 30(27): 2000503

    CAS  Google Scholar 

  101. 101.

    Xiong W, Li H, Cao R. Nitrogen and sulfur dual-doped hollow mesoporous carbon spheres as efficient metal-free catalyst for oxygen reduction reaction. Inorganic Chemistry Communications, 2020, 114: 107848

    CAS  Google Scholar 

  102. 102.

    Chen G, Liu J, Li Q, Guan P, Yu X, Xing L, Zhang J, Che R. A direct H2O2 production based on hollow porous carbon spheresulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Research, 2019, 12(10): 2614–2622

    CAS  Google Scholar 

  103. 103.

    Jia N, Yang T, Shi S, Chen X, An Z, Chen Y, Yin S, Chen P N. F-codoped carbon nanocages: an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2883–2891

    CAS  Google Scholar 

  104. 104.

    Dang X, Yang R, Wang Z, Wu S, Zhao H. Efficient visible-light activation of molecular oxygen to produce hydrogen peroxide using P doped g-C3N4 hollow spheres. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(43): 22720–22727

    CAS  Google Scholar 

  105. 105.

    Hu S, Qu X, Li P, Wang F, Li Q, Song L, Zhao Y, Kang X. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu (I)-N active sites. Chemical Engineering Journal, 2018, 334: 410–418

    CAS  Google Scholar 

  106. 106.

    Duraisamy V, Krishnan R, Senthil Kumar S M. N-doped hollow mesoporous carbon nanospheres for oxygen reduction reaction in alkaline media. ACS Applied Nano Materials, 2020, 3(9): 8875–8887

    CAS  Google Scholar 

  107. 107.

    Song R, Cao X, Xu J, Zhou X, Wang X, Yuan N, Ding J O. N-codoped 3D graphene hollow sphere derived from metal-organic frameworks as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13(12): 6174–6183

    CAS  PubMed  Google Scholar 

  108. 108.

    Liu Y, Wang X, Zhao B, Shao X, Huang M. Fe/Fe3C nanoparticles encapsulated in N-doped hollow carbon spheres as efficient electrocatalysts for the oxygen reduction reaction over a wide pH range. Chemistry, 2019, 25(41): 9650–9657

    CAS  PubMed  Google Scholar 

  109. 109.

    Wang Q, Lei Y, Chen Z, Wu N, Wang Y, Wang B, Wang Y. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 516–526

    CAS  Google Scholar 

  110. 110.

    Tan H, Li Y, Kim J, Takei T, Wang Z, Xu X, Wang J, Bando Y, Kang Y M, Tang J, et al. Sub-50 nm iron-nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Advancement of Science, 2018, 5(7): 1800120

    Google Scholar 

  111. 111.

    Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan H J. Transition metal carbides and nitrides in energy storage and conversion. Advancement of Science, 2016, 3(5): 1500286

    Google Scholar 

  112. 112.

    Li J S, Zhou Y W, Huang M J. Engineering MoxC nanoparticles confined in N, P-codoped porous carbon hollow spheres for enhanced hydrogen evolution reaction. Dalton Transactions (Cambridge, England), 2021, 50(2): 499–503

    CAS  Google Scholar 

  113. 113.

    Chi J Q, Gao W K, Lin J H, Dong B, Yan K L, Qin J F, Liu B, Chai Y M, Liu C G N. P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction. Catalysis Today, 2019, 330: 259–267

    CAS  Google Scholar 

  114. 114.

    Cai Z S, Shi Y, Bao S S, Shen Y, Xia X H, Zheng L M. Bioinspired engineering of cobalt-phosphonate nanosheets for robust hydrogen evolution reaction. ACS Catalysis, 2018, 8(5): 3895–3902

    CAS  Google Scholar 

  115. 115.

    Huang S, Meng Y, Cao Y, He S, Li X, Tong S, Wu M. N-, O- and P-doped hollow carbons: metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental, 2019, 248: 239–248

    CAS  Google Scholar 

  116. 116.

    Zhao D, Sun K A, Cheong W C, Zheng L R, Zhang C, Liu S J, Cao X, Wu K L, Pan Y, Zhuang Z W, et al. Synergistically interactive pyridinic-N-MoP sites: identified active centers for enhanced hydrogen evolution in alkaline solution. Angewandte Chemie International Edition, 2020, 59(23): 8982–8990

    CAS  PubMed  Google Scholar 

  117. 117.

    Wang B, Wang Z, Wang X, Zheng B, Zhang W, Chen Y. Scalable synthesis of porous hollow CoSe2-MoSe2/carbon microspheres for highly efficient hydrogen evolution reaction in acidic and alkaline media. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(26): 12701–12707

    CAS  Google Scholar 

  118. 118.

    Chen W, Qiao R, Song C, Zhao L, Jiang Z J, Maiyalagan T, Jiang Z. Tailoring the thickness of MoSe2 layer of the hierarchical double-shelled N-doped carbon@MoSe2 hollow nanoboxes for efficient and stable hydrogen evolution reaction. Journal of Catalysis, 2020, 381: 363–373

    CAS  Google Scholar 

  119. 119.

    Wei Y, Zhang X, Zhao Z, Chen H S, Matras-Postolek K, Wang B, Yang P. Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution. Electrochimica Acta, 2019, 297: 553–563

    CAS  Google Scholar 

  120. 120.

    Yi M, Lu B, Zhang X, Tan Y, Zhu Z, Pan Z, Zhang J. Ionic liquid-assisted synthesis of nickel cobalt phosphide embedded in N, P codoped-carbon with hollow and folded structures for efficient hydrogen evolution reaction and supercapacitor. Applied Catalysis B: Environmental, 2021, 283: 119635

    CAS  Google Scholar 

  121. 121.

    Wang F, Xiao L, Chen J, Chen L, Fang R, Li Y. Regulating the electronic structure and water adsorption capability by constructing carbon-doped CuO hollow spheres for efficient photocatalytic hydrogen evolution. ChemSusChem, 2020, 13(21): 5711–5721

    CAS  PubMed  Google Scholar 

  122. 122.

    Li Y, Zhang D, Fan J, Xiang Q. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2021, 42(4): 627–636

    CAS  Google Scholar 

  123. 123.

    Kang J, Byun S, Kim S, Lee J, Jung M, Hwang H, Kim TW, Song S H, Lee D. Design of three-dimensional hollow-sphere architecture of Ti3C2Tx MXene with graphitic carbon nitride nanoshells for efficient photocatalytic hydrogen evolution. ACS Applied Energy Materials, 2020, 3(9): 9226–9233

    CAS  Google Scholar 

  124. 124.

    Zhang J W, Zhang H, Ren T Z, Yuan Z Y, Bandosz T J. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287

    Google Scholar 

  125. 125.

    Chen L, Ren J T, Wang Y S, Tian W W, Gao L J, Yuan Z Y. Organic-inorganic cobalt-phosphonate-derived hollow cobalt phosphate spherical hybrids for highly efficient oxygen evolution. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13559–13568

    CAS  Google Scholar 

  126. 126.

    Dong Z, Zhang W, Xiao Y, Wang Y, Luan C, Qin C, Dong Y, Li M, Dai X, Zhang X. One-pot-synthesized cofe-glycerate hollow spheres with rich oxyhydroxides for efficient oxygen evolution reaction. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5464–5477

    CAS  Google Scholar 

  127. 127.

    Li B Q, Zhao C X, Chen S, Liu J N, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Advanced Materials, 2019, 31(19): 1900592

    Google Scholar 

  128. 128.

    Sun X, Sun S, Gu S, Liang Z, Zhang J, Yang Y, Deng Z, Wei P, Peng J, Xu Y, et al. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy, 2019, 61: 245–250

    CAS  Google Scholar 

  129. 129.

    Zhang H, Liu Y, Chen T, Zhang J, Zhang J, Lou X W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated ni atoms supported on a N-doped carbon matrix. Advanced Materials, 2019, 31(48): 1904548

    CAS  Google Scholar 

  130. 130.

    Tong J, Ma W, Bo L, Li T, Li W, Li Y, Zhang Q. Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn-air batteries, and water-splitting electrolyzers. Journal of Power Sources, 2019, 441: 227166

    CAS  Google Scholar 

  131. 131.

    Sultan S, Tiwari J N, Singh A N, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim K S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Advanced Energy Materials, 2019, 9(22): 1900624

    Google Scholar 

  132. 132.

    Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Journal of the American Chemical Society, 2015, 137(7): 2688–2694

    CAS  PubMed  Google Scholar 

  133. 133.

    Pu Z, Zhang C, Amiinu I S, Li W, Wu L, Mu S. General strategy for the synthesis of transition-metal phosphide/N-doped carbon frameworks for hydrogen and oxygen evolution. ACS Applied Materials & Interfaces, 2017, 9(19): 16187–16193

    CAS  Google Scholar 

  134. 134.

    Tong J, Li Y, Bo L, Li W, Li T, Zhang Q, Kong D, Wang H, Li C. CoP/N-doped carbon hollow spheres anchored on electrospinning core-shell N-doped carbon nanofibers as efficient electrocatalysts for water splitting. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17432–17442

    CAS  Google Scholar 

  135. 135.

    Dong Y, Zhou M, Tu W, Zhu E, Chen Y, Zhao Y, Liao S, Huang Y, Chen Q, Li Y. Hollow loofah-like N, O-Co-doped carbon tube for electrocatalysis of oxygen reduction. Advanced Functional Materials, 2019, 29(18): 1900015

    Google Scholar 

  136. 136.

    Li J, Kang Y, Wei W, Li X, Lei Z, Liu P. Well-dispersed ultrafine CoFe nanoalloy decorated N-doped hollow carbon microspheres for rechargeable/flexible Zn-air batteries. Chemical Engineering Journal, 2021, 407: 127961

    CAS  Google Scholar 

  137. 137.

    Chen S, Cheng J, Ma L, Zhou S, Xu X, Zhi C, Zhang W, Zhi L, Zapien J A. Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. Nanoscale, 2018, 10(22): 10412–10419

    CAS  PubMed  Google Scholar 

  138. 138.

    Zhu X, Tan X, Wu K H, Chiang C L, Lin Y C, Lin Y G, Wang D W, Smith S, Lu X, Amal R N. P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(24): 14732–14742

    CAS  Google Scholar 

  139. 139.

    Li Z, He H, Cao H, Sun S, Diao W, Gao D, Lu P, Zhang S, Guo Z, Li M, et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 240: 112–121

    CAS  Google Scholar 

  140. 140.

    Jose V, Hu H, Edison E, Manalastas W Jr, Ren H, Kidkhunthod P, Sreejith S, Jayakumar A, Nsanzimana J M V, Srinivasan M, et al. Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods, 2020, 5(2): 2000751

    Google Scholar 

  141. 141.

    Wang J, Fan M, Tu W, Chen K, Shen Y, Zhang H. In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. Journal of Alloys and Compounds, 2019, 777: 944–953

    CAS  Google Scholar 

  142. 142.

    Wu X, Niu Y, Feng B, Yu Y, Huang X, Zhong C, Hu W, Li C M. Mesoporous hollow nitrogen-doped carbon nanospheres with embedded MnFe2O4/Fe hybrid nanoparticles as efficient bifunctional oxygen electrocatalysts in alkaline media. ACS Applied Materials & Interfaces, 2018, 10(24): 20440-20447

    CAS  Google Scholar 

  143. 143.

    Zhang D, Ma X, Zhang H, Liao Y, Xiang Q. Enhanced photocatalytic hydrogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+. Materials Today. Energy, 2018, 10: 132–140

    Google Scholar 

  144. 144.

    Zheng Y, Liu Y, Guo X, Zhang W, Wang Y, Zhang M, Li R, Peng Z, Xie H, Huang Y S. Na co-doped graphitic carbon nitride/ reduced graphene oxide hollow mesoporous spheres for photoelectrochemical catalysis application. ACS Applied Nano Materials, 2020, 3(8): 7982–7991

    CAS  Google Scholar 

  145. 145.

    Shao B, Liu Z, Zeng G, Wu Z, Liu Y, Cheng M, Chen M, Liu Y, Zhang W, Feng H. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16424–16436

    CAS  Google Scholar 

  146. 146.

    Shao B, Liu X, Liu Z, Zeng G, Zhang W, Liang Q, Liu Y, He Q, Yuan X, Wang D, Luo S, Gong S. Synthesis and characterization of 2D/0D g-C3N4/CdS-nitrogen doped hollow carbon spheres (NHCs) composites with enhanced visible light photodegradation activity for antibiotic. Chemical Engineering Journal, 2019, 374: 479–493

    CAS  Google Scholar 

  147. 147.

    Li X, Yan X, Hu X, Feng R, Zhou M, Wang L. Enhanced adsorption and catalytic peroxymonosulfate activation by metalfree N-doped carbon hollow spheres for water depollution. Journal of Colloid and Interface Science, 2021, 591: 184–192

    CAS  PubMed  Google Scholar 

  148. 148.

    Cheng C, Chen D, Li N, Xu Q, Li H, He J, Lu J. ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: an advanced catalyst for Cr (VI) reduction. Journal of Hazardous Materials, 2020, 391: 122205

    CAS  PubMed  Google Scholar 

  149. 149.

    Zhang Y, Wang F, Ou P, Zhu H, Lai Y, Zhao Y, Shi W, Chen Z, Li S, Wang T. High efficiency and rapid degradation of bisphenol A by the synergy between adsorption and oxidization on the MnO2@ nano hollow carbon sphere. Journal of Hazardous Materials, 2018, 360: 223–232

    CAS  PubMed  Google Scholar 

  150. 150.

    Li X, Yan X, Hu X, Feng R, Zhou M, Wang L. Hollow Cu-Co/Ndoped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation. Chemical Engineering Journal, 2020, 397: 125533

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shandong province (Grant No. ZR2019QEM005). Project of Shandong province Higher Educational Young Innovative Talent Introduction and Cultivation Team [environmental functional material innovation team] and the SDUST Research Fund (Grant No. 2015YQJH101).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, XH., Yi, JL., Zhang, RL. et al. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Front. Chem. Sci. Eng. 15, 1380–1407 (2021). https://doi.org/10.1007/s11705-021-2097-z

Download citation

Keywords

  • hollow carbon spheres
  • functionalization
  • noble metal-free
  • catalysis