Skip to main content

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural

Abstract

A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole) block copolymer, with an upper critical solution temperature of about 45 °C. The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water, affording high yields of 2,5-furandicarboxylic acid (up to >99.9%). The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance. Moreover, the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature. Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts. Chemical Reviews, 2014, 114(3): 1827–1870

    CAS  PubMed  Google Scholar 

  2. 2.

    Li C, Zhao X, Wang A, Huber G W, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 2015, 115(21): 11559–11624

    CAS  PubMed  Google Scholar 

  3. 3.

    Liu B, Zhang Z. Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catalysis, 2016, 6(1): 326–338

    CAS  Google Scholar 

  4. 4.

    Zhang Z, Song J, Han B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chemical Reviews, 2017, 117(10): 6834–6880

    CAS  PubMed  Google Scholar 

  5. 5.

    Zhang Z, Huber G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47(4): 1351–1390

    CAS  PubMed  Google Scholar 

  6. 6.

    van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 2013, 113(3): 1499–1597

    CAS  PubMed  Google Scholar 

  7. 7.

    Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49(13): 4273–4306

    CAS  PubMed  Google Scholar 

  8. 8.

    Tong X, Ma Y, Li Y. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A, General, 2010, 385(1–2): 1–13

    CAS  Google Scholar 

  9. 9.

    Werpy T, Petersen G. Top Value Added Chemicals from Biomass: Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. US DOE Report, 2004

    Google Scholar 

  10. 10.

    Eerhart A J J E, Faaij A P C, Patel M K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 2012, 5(4): 6407–6422

    CAS  Google Scholar 

  11. 11.

    Sajid M, Zhao X, Liu D. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018, 20(24): 5427–5453

    CAS  Google Scholar 

  12. 12.

    Chen C, Wang L, Zhu B, Zhou Z, El-Hout S I, Yang J, Zhang J. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5- hydroxymethylfurfural: catalysts, processes and reaction mechanism. Journal of Energy Chemistry, 2021, 54: 528–554

    Google Scholar 

  13. 13.

    Albonetti S, Lolli A, Morandi V, Migliori A, Lucarelli C, Cavani F. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylicacid over Au-based catalysts: optimization of active phase and metal-support interaction. Applied Catalysis B: Environmental, 2015, 163: 520–530

    CAS  Google Scholar 

  14. 14.

    Cai J, Ma H, Zhang J, Song Q, Du Z, Huang Y, Xu J. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chemistry-A European Journal, 2013, 19(42): 14215–14223

    CAS  Google Scholar 

  15. 15.

    Liu Y, Ma H Y, Lei D, Lou L L, Liu S, Zhou W, Wang G C, Yu K. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catalysis, 2019, 9(9): 8306–8315

    CAS  Google Scholar 

  16. 16.

    Yu K, Lei D, Feng Y, Yu H, Chang Y, Wang Y, Liu Y, Wang G C, Lou L L, Liu S, Zhou W. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1− xBixO2 − δ. Journal of Catalysis, 2018, 365: 292–302

    CAS  Google Scholar 

  17. 17.

    Rass H A, Essayem N, Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2- and ZrO2-based supports. ChemSusChem, 2015, 8(7): 1206–1217

    Google Scholar 

  18. 18.

    Yang J, Yu H, Wang Y, Qi F, Liu H, Lou L L, Yu K, Zhou W, Liu S. Effect of the oxygen coordination environment of Ca-Mn oxides on the catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural. Catalysis Science & Technology, 2019, 9(23): 6659–6668

    CAS  Google Scholar 

  19. 19.

    Lei D, Yu K, Li M R, Wang Y, Wang Q, Liu T, Liu P, Lou L L, Wang G, Liu S. Facet effect of single-crystalline Pd nanocrystals for aerobic oxidation of 5-hydroxymethyl-2-furfural. ACS Catalysis, 2017, 7(1): 421–432

    CAS  Google Scholar 

  20. 20.

    Zhang Z, Zhen J, Liu B, Lv K, Deng K. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chemistry, 2015, 17(2): 1308–1317

    CAS  Google Scholar 

  21. 21.

    Xie J, Nie J, Liu H. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base. Chinese Journal of Catalysis, 2014, 35(6): 937–944

    CAS  Google Scholar 

  22. 22.

    Villa A, Schiavoni M, Campisi S, Veith G M, Prati L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem, 2013, 6(4): 609–612

    CAS  PubMed  Google Scholar 

  23. 23.

    Gui Z, Cao W, Saravanamurugan S, Riisager A, Chen L, Qi Z. Efficient aerobic oxidation of 5-hydroxymethylfurfural in aqueous media with Au-Pd supported on zinc hydroxycarbonate. Chem-CatChem, 2016, 8(23): 3636–3643

    CAS  Google Scholar 

  24. 24.

    Gupta N K, Nishimura S, Takagaki A, Ebitani K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chemistry, 2011, 13(4): 824–827

    CAS  Google Scholar 

  25. 25.

    Gao T, Gao T, Fang W, Cao Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst. Molecular Catalysis, 2017, 439: 171–179

    CAS  Google Scholar 

  26. 26.

    Ferraz C P, Zielinski M, Pietrowski M, Heyte S, Dumeignil F, Rossi L M, Wojcieszak R. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16332–16340

    CAS  Google Scholar 

  27. 27.

    Wang Y, Yu K, Lei D, Si W, Feng Y, Lou L L, Liu S. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4752–4761

    CAS  Google Scholar 

  28. 28.

    Gao Z, Xie R, Fan G, Yang L, Li F. Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5852–5861

    CAS  Google Scholar 

  29. 29.

    Bonincontro D, Lolli A, Villa A, Prati L, Dimitratos N, Veith G M, Chinchilla L E, Botton G A, Cavani F, Albonetti S. AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions. Green Chemistry, 2019, 21(15): 4090–4099

    CAS  Google Scholar 

  30. 30.

    Wan X, Zhou C, Chen J, Deng W, Zhang Q, Yang Y, Wang Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles. ACS Catalysis, 2014, 4(7): 2175–2185

    CAS  Google Scholar 

  31. 31.

    Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y. Functionalized carbon nanotubes for biomass conversion: the base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem, 2015, 7(18): 2853–2863

    CAS  Google Scholar 

  32. 32.

    Yi G, Teong S P, Zhang Y. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst. Green Chemistry, 2016, 18(4): 979–983

    CAS  Google Scholar 

  33. 33.

    Guan W, Zhang Y, Wei Y, Li B, Feng Y, Yan C, Huo P, Yan Y. Pickering HIPEs derived hierarchical porous nitrogen-doped carbon supported bimetallic AuPd catalyst for base-free aerobic oxidation of HMF to FDCA in water. Fuel, 2020, 278: 118362

    CAS  Google Scholar 

  34. 34.

    Han X, Li C, Guo Y, Liu X, Zhang Y, Wang Y. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A, General, 2016, 526: 1–8

    CAS  Google Scholar 

  35. 35.

    Artz J, Palkovits R. Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks. ChemSusChem, 2015, 8(22): 3832–3838

    CAS  PubMed  Google Scholar 

  36. 36.

    Gao T, Chen J, Fang W, Cao Q, Su W, Dumeignil F. Ru/MnxCe1Oy catalysts with enhanced oxygen mobility and strong metal-support interaction: exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. Journal of Catalysis, 2018, 368: 53–68

    CAS  Google Scholar 

  37. 37.

    Mishra D K, Lee H J, Kim J, Lee H S, Cho J K, Suh Y W, Yi Y, Kim Y J. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chemistry, 2017, 19(7): 1619–1623

    CAS  Google Scholar 

  38. 38.

    Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst. Green Chemistry, 2016, 18(6): 1597–1604

    CAS  Google Scholar 

  39. 39.

    Ke C, Li M, Fan G, Yang L, Li F. Pt nanoparticles supported on nitrogen-doped-carbon-decorated CeO2 for base-free aerobic oxidation of 5-hydroxymethylfurfural. Chemistry, an Asian Journal, 2018, 13(18): 2714–2722

    CAS  PubMed  Google Scholar 

  40. 40.

    Siankevich S, Savoglidis G, Fei Z, Laurenczy G, Alexander D T L, Yan N, Dyson P J. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions. Journal of Catalysis, 2014, 315: 67–74

    CAS  Google Scholar 

  41. 41.

    Liguori F, Barbaro P, Calisi N. Continuous-flow oxidation of HMF to FDCA by resin-supported platinum catalysts in neat water. ChemSusChem, 2019, 12(12): 2558–2563

    CAS  PubMed  Google Scholar 

  42. 42.

    Bawa P, Pillay V, Choonara Y E, du Toit L C. Stimuli-responsive polymers and their applications in drug delivery. Biomedical Materials, 2009, 4(2): 022001

    PubMed  Google Scholar 

  43. 43.

    Cheng W, Gu L, Ren W, Liu Y. Stimuli-responsive polymers for anti-cancer drug delivery. Materials Science and Engineering C, 2015, 45: 600–608

    Google Scholar 

  44. 44.

    Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski L, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Progress in Polymer Science, 2017, 68: 35–76

    CAS  Google Scholar 

  45. 45.

    Mackenzie K J, Francis M B. Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. Journal of the American Chemical Society, 2013, 135(1): 293–300

    CAS  PubMed  Google Scholar 

  46. 46.

    Lou L L, Qu H, Yu W, Wang B, Ouyang L, Liu S, Zhou W. Covalently immobilized lipase on a thermoresponsive polymer with an upper critical solution temperature as an efficient and recyclable asymmetric catalyst in aqueous media. ChemCatChem, 2018, 10(5): 1166–1172

    CAS  Google Scholar 

  47. 47.

    Zhang J, Zhang M, Tang K, Verpoort F, Sun T. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small, 2014, 10(1): 32–46

    CAS  PubMed  Google Scholar 

  48. 48.

    Tan R, Dong Y, Peng M, Zheng W, Yin D. Thermoresponsive chiral salen Mn(III) complexes as efficient and reusable catalysts for the oxidative kinetic resolution of secondary alcohols in water. Applied Catalysis A, General, 2013, 458: 1–10

    CAS  Google Scholar 

  49. 49.

    Yu W, Lou L L, Yu K, Li S, Shi Y, Liu S. Pt nanoparticles stabilized by thermosensitive polymer as effective and recyclable catalysts for asymmetric hydrogenation of ethyl pyruvate. RSC Advances, 2016, 6(57): 52500–52508

    CAS  Google Scholar 

  50. 50.

    Kong L, Zhao J, Cheng T, Lin J, Liu G. A polymer-coated rhodium/diamine-functionalized silica for controllable reaction switching in enantioselective tandem reduction-actonization of ethyl 2-acylarylcarboxylates. ACS Catalysis, 2016, 6(4): 2244–2249

    CAS  Google Scholar 

  51. 51.

    Hou L, Wu P. Understanding the UCST-type transition of P(AAm-co-AN) in H2O and D2O: dramatic effects of solvent isotopes. Soft Matter, 2015, 11(35): 7059–7065

    CAS  PubMed  Google Scholar 

  52. 52.

    Davis S E, Zope B N, Davis R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chemistry, 2012, 14(1): 143–147

    CAS  Google Scholar 

  53. 53.

    Davis S E, Ide M S, Davis R J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chemistry, 2013, 15(1): 17–45

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21203102), the Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering Fund (Grant No. NCC2020PY02), the Tianjin Municipal Natural Science Foundation (Grant No. 17JCYBJC22600), the Innovative Team Project of Ministry of Education of China (IRT13R30), and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lan-Lan Lou.

Electronic Supplementary Material

11705_2021_2092_MOESM1_ESM.pdf

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Deng, J., Wang, B. et al. Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural. Front. Chem. Sci. Eng. 15, 1514–1523 (2021). https://doi.org/10.1007/s11705-021-2092-4

Download citation

Keywords

  • aerobic oxidation
  • base-free
  • 5-hydroxymethyl-2-furfural
  • Pt nanoparticle
  • thermoresponsive block copolymer