Skip to main content

Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS


It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction. However, achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging. In this study, we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1xS nanoparticles for hydrogen production under visible light irradiation (λ > 420 nm). Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers. The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g−1·h−1, with an apparent quantum efficiency of 35.9% at 420 nm, which is 4.2 and 23.9 times higher than those of pure Zn0.5Cd0.5S (4.67 mmol·g−1·h−1) and CdS (0.82 mmol·g−1·h−1), respectively. In particular, under Pt-free conditions, an attractive hydrogen production rate (3.23 mmol·g−1·h−1) was achieved, providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting. Moreover, the composites showed excellent stability, and no obvious loss in activity was observed after five cycling tests.

This is a preview of subscription content, access via your institution.


  1. 1.

    Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399

    CAS  Google Scholar 

  2. 2.

    Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J H. Nanophotocatalytic materials: possibilities and challenges. Advanced Materials, 2012, 24(2): 229–251

    CAS  PubMed  Google Scholar 

  3. 3.

    Cui Y, Zeng Z, Zheng J, Huang Z, Yang J. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite. Frontiers of Chemical Science and Engineering, 2021, (in press)

  4. 4.

    Chen S, Qi Y, Li C, Domen K, Zhang F. Surface strategies for particulate photocatalysts toward artificial photosynthesis. Joule, 2018, 2(11): 2260–2288

    CAS  Google Scholar 

  5. 5.

    Yang J, Liu X, Cao H, Shi Y, Xie Y, Xiao J. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Frontiers of Chemical Science and Engineering, 2019, 13(1): 185–191

    CAS  Google Scholar 

  6. 6.

    Kundu S, Patra A. Nanoscale strategies for light harvesting. Chemical Reviews, 2017, 117(2): 712–757

    CAS  PubMed  Google Scholar 

  7. 7.

    Lu J, Lan L, Liu X T, Wang N, Fan X. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13(4): 665–671

    CAS  Google Scholar 

  8. 8.

    Yang Y L, Tang Y, Jiang H M, Chen Y M, Wan P Y, Fan M H, Zhang R R, Ullah S, Pan L, Zou J J, et al. 2020 Roadmap on gas-involved photo-and electro-catalysis. Chinese Chemical Letters, 2019, 30(12): 2089–2109

    CAS  Google Scholar 

  9. 9.

    Liu J, Zhao H, Wu M, van der Schueren B, Li Y, Deparis O, Ye J, Ozin G A, Hasan T, Su B L. Slow photons for photocatalysis and photovoltaics. Advanced Materials, 2017, 29(17): 1605349

    Google Scholar 

  10. 10.

    Chen J I L, von Freymann G, Choi S Y, Kitaev V, Ozin G A. Amplified photochemistry with slow photons. Advanced Materials, 2006, 18(14): 1915–1919

    CAS  Google Scholar 

  11. 11.

    Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chemical Communications, 2018, 54(50): 6484–6502

    CAS  PubMed  Google Scholar 

  12. 12.

    Chen X, Ye J, Ouyang S, Kako T, Li Z, Zou Z. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano, 2011, 5(6): 4310–4318

    CAS  PubMed  Google Scholar 

  13. 13.

    Chang Y, Yu K, Zhang C, Li R, Zhao P, Lou L L, Liu S. Three-dimensionally ordered macroporous WO3 supported Ag3PO4 with enhanced photocatalytic activity and durability. Applied Catalysis B: Environmental, 2015, 176: 363–373

    Google Scholar 

  14. 14.

    Chang Y, Xuan Y, Quan H, Zhang H, Liu S, Li Z, Yu K, Cao J. Hydrogen treated Au/3DOM-TiO2 with promoted photocatalytic efficiency for hydrogen evolution from water splitting. Chemical Engineering Journal, 2020, 382: 122869

    CAS  Google Scholar 

  15. 15.

    Zalfani M, Van Der Schueren B, Hu Z, Rooke J C, Bourguiga R, Wu M, Li Y, Tendeloo G V, Su B L. Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(42): 21244–21256

    CAS  Google Scholar 

  16. 16.

    Lin B, Li J, Xu B, Yan X, Yang B, Wei J, Yang G. Spatial positioning effect of dual cocatalysts accelerating charge transfer in three dimensionally ordered macroporous g-C3N4 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243: 94–105

    CAS  Google Scholar 

  17. 17.

    Ji K, Dai H, Deng J, Zang H, Arandiyan H, Xie S, Yang H. 3DOM BiVO4 supported silver bromide and noble metals: high-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. chlorophenol. Applied Catalysis B: Environmental, 2015, 168: 274–282

    Google Scholar 

  18. 18.

    Ji K, Deng J, Zang H, Han J, Arandiyan H, Dai H. Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4-BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165: 285–295

    CAS  Google Scholar 

  19. 19.

    Song Y, Li N, Chen D, Xu Q, Li H, He J, Lu J. 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 238: 255–262

    CAS  Google Scholar 

  20. 20.

    Zhang C, Zhao P, Liu S, Yu K. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chinese Journal of Catalysis, 2019, 40(9): 1324–1338

    CAS  Google Scholar 

  21. 21.

    Zhang G, Liu G, Wang L, Irvine J T S. Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews, 2016, 45(21): 5951–5984

    CAS  PubMed  Google Scholar 

  22. 22.

    Yu K, Zhang C, Chang Y, Feng Y, Yang Z, Yang T, Lou L L, Liu S. Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance. Applied Catalysis B: Environmental, 2017, 200: 514–520

    CAS  Google Scholar 

  23. 23.

    Chang Y, Yu K, Zhang C, Yang Z, Feng Y, Hao H, Jiang Y, Lou L L, Zhou W, Liu S. Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Applied Catalysis B: Environmental, 2017, 215: 74–84

    CAS  Google Scholar 

  24. 24.

    Wu X, Wang C, Wei Y, Xiong J, Zhao Y, Zhao Z, Liu J, Li J. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. Journal of Catalysis, 2019, 377: 309–321

    CAS  Google Scholar 

  25. 25.

    Zhang C, Yu K, Feng Y, Chang Y, Yang T, Xuan Y, Lei D, Lou L L, Liu S. Novel 3DOM-SrTiO3/Ag/Ag3PO4 ternary Z-scheme photocatalysts with remarkably improved activity and durability for contaminant degradation. Applied Catalysis B: Environmental, 2017, 210: 77–87

    CAS  Google Scholar 

  26. 26.

    Cheng L, Xiang Q, Liao Y, Zhang H. CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391

    CAS  Google Scholar 

  27. 27.

    Wang F, Kan Z G, Cao F, Guo Q, Xu Y L, Qi C Y, Li C L. Synergistic effects of CdS in sodium titanate based nanostructures for hydrogen evolution. Chinese Chemical Letters, 2018, 29(9): 1417–1420

    CAS  Google Scholar 

  28. 28.

    Zhang D P, Wang P F, Chen F Y, Mu K L, Li Y, Wang H T, Ren Z J, Zhan S H. In situ integration of efficient photocatalyst Cu1.8S/ZnxCd1−xS heterojunction derived from a metal-organic framework. Chinese Chemical Letters, 2020, 31(10): 2795–2798

    CAS  Google Scholar 

  29. 29.

    Li H, Chen Z H, Zhao L, Yang G D. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Metals, 2019, 38(5): 420–427

    CAS  Google Scholar 

  30. 30.

    Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J. Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catalysis, 2013, 3(5): 882–889

    CAS  Google Scholar 

  31. 31.

    Zhong J, Zhang Y, Hu C, Hou R, Yin H, Li H, Huo Y. Supercritical solvothermal preparation of a ZnxCd1−xS visible photocatalyst with enhanced activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(46): 19641–19647

    CAS  Google Scholar 

  32. 32.

    Zhu X, Yu S, Gong X, Xue C. In situ decoration of ZnxCd1−xS with FeP for efficient photocatalytic generation of hydrogen under irradiation with visible light. ChemPlusChem, 2018, 83(9): 825–830

    CAS  PubMed  Google Scholar 

  33. 33.

    Dai D, Xu H, Ge L, Han C, Gao Y, Li S, Lu Y. In situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Applied Catalysis B: Environmental, 2017, 217: 429–436

    CAS  Google Scholar 

  34. 34.

    Zhang X, Zhao Z, Zhang W, Zhang G, Qu D, Miao X, Sun S, Sun Z. Surface defects enhanced visible light photocatalytic H2 production for Zn-Cd-S solid solution. Small, 2016, 12(6): 793–801

    CAS  PubMed  Google Scholar 

  35. 35.

    Zhao X, Feng J, Liu J, Shi W, Yang G, Wang G C, Cheng P. An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1−xS nanocrystal derived from a metal-organic framework. Angewandte Chemie International Edition, 2018, 130(31): 9938–9942

    Google Scholar 

  36. 36.

    Xue C, Li H, An H, Yang B, Wei J, Yang G. NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “Bridge” toward visible-light-driven hydrogen evolution. ACS Catalysis, 2018, 8(2): 1532–1545

    CAS  Google Scholar 

  37. 37.

    Sharma M, Singh S, Pandey O P. Excitation induced tunable emission in biocompatible chitosan capped ZnS nanophosphors. Journal of Applied Physics, 2010, 107(10): 104319

    Google Scholar 

  38. 38.

    Zhao H, Liu H, Sun R, Chen Y, Li X A. Zn0.5Cd0.5S photocatalyst modified by 2D black phosphorus for efficient hydrogen evolution from water. ChemCatChem, 2018, 10(19): 4395–1405

    CAS  Google Scholar 

  39. 39.

    Xuan Y, Quan H, Shen Z, Zhang C, Yang X, Lou L L, Liu S, Yu K. Band-gap and charge transfer engineering in red phosphorus-based composites for enhanced visible-light-driven H2 evolution. Chemistry (Weinheim an der Bergstrasse, Germany), 2020, 26(10): 2285–2292

    CAS  Google Scholar 

  40. 40.

    Ning X, Zhen W, Wu Y, Lu G. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383

    CAS  Google Scholar 

  41. 41.

    Yu K, Lei D, Feng Y, Yu H, Chang Y, Wang Y, Liu Y, Wang G C, Lou L L, Liu S, Zhou W. The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1−xBixO2−δ. Journal of Catalysis, 2018, 365: 292–302

    CAS  Google Scholar 

  42. 42.

    Chang Y, Xuan Y, Zhang C, Hao H, Yu K, Liu S. Z-Scheme Pt@CdS/3DOM-SrTiO3 composite with enhanced photocatalytic hydrogen evolution from water splitting. Catalysis Today, 2019, 327: 315–322

    CAS  Google Scholar 

  43. 43.

    Li B, Tian Z, Li H, Yang Z, Wang Y, Wang X. Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochimica Acta, 2019, 314: 32–39

    CAS  Google Scholar 

  44. 44.

    Wang Z, Hisatomi T, Li R, Sayama K, Liu G, Domen K, Li C, Wang L. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule, 2021, 5(2): 344–359

    CAS  Google Scholar 

  45. 45.

    Yu T, Lv Z, Wang K, Sun K, Liu X, Wang G, Jiang L, Xie G. Constructing SrTiO3-T/CdZnS heterostructure with tunable oxygen vacancies for solar-light-driven photocatalytic hydrogen evolution. Journal of Power Sources, 2019, 438: 227014

    CAS  Google Scholar 

  46. 46.

    Ren M, Ravikrishna R, Valsaraj K T. Photocatalytic degradation of gaseous organic species on photonic band-gap titania. Environmental Science & Technology, 2006, 40(22): 7029–7033

    CAS  Google Scholar 

  47. 47.

    Zhang K, Liu Y, Deng J, Xie S, Lin H, Zhao X, Yang J, Han Z, Dai H. Fe2O3/3DOM BiVO4: high-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental, 2017, 202: 569–579

    CAS  Google Scholar 

  48. 48.

    Zhao H, Hu Z, Liu J, Li Y, Wu M, Van Tendeloo G, Su B L. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy, 2018, 47: 266–274

    CAS  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Tianjin (Grant No. 17JCYBJC22600), Tianjin Development Program for Innovation and Entrepreneurship, and the Fundamental Research Funds for the Central Universities.

Author information



Corresponding author

Correspondence to Kai Yu.

Electronic Supplementary Material


Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quan, H., Qian, K., Xuan, Y. et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS. Front. Chem. Sci. Eng. 15, 1561–1571 (2021).

Download citation


  • three-dimensionally ordered macroporous SrTiO3
  • ZnxCd1−xS
  • visible light
  • hydrogen production
  • promotion mechanism