Skip to main content

A review on the forward osmosis applications and fouling control strategies for wastewater treatment

Abstract

During the last decades, the utilization of osmotic pressure-driven forward osmosis technology for wastewater treatment has drawn great interest, due to its high separation efficiency, low membrane fouling propensity, high water recovery and relatively low energy consumption. This review paper summarizes the implementation of forward osmosis technology for various wastewater treatment including municipal sewage, landfill leachate, oil/gas exploitation wastewater, textile waste-water, mine wastewater, and radioactive wastewater. However, membrane fouling is still a critical issue, which affects water flux stability, membrane life and operating cost. Different membrane fouling types and corresponding fouling mechanisms, including organic fouling, inorganic fouling, biofouling and combined fouling are therefore further discussed. The fouling control strategies including feed pre-treatment, operation condition optimization, membrane selection and modification, membrane cleaning and tailoring the chemistry of draw solution are also reviewed comprehensively. At the end of paper, some recommendations are proposed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Akanda A S, Nusrat F, Hasan M A, Fallatah O. Leveraging earth observations to improve data resolution and tracking of sustainable development goals in water resources and public health. In: American Geophysical Union Fall Meeting. Washington: American Geophysical Union, 2017, Abstract #PA22A-01

    Google Scholar 

  2. 2.

    Gober P, Kirkwood C W. Vulnerability assessment of climate-induced water shortage in phoenix. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21295–21299

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Roberts L. 9 billion? Science, 2011, 333(6042): 540–543

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Wolde Rufael Y. Coal consumption and economic growth revisited. Applied Energy, 2010, 87(1): 160–167

    Article  Google Scholar 

  5. 5.

    Ebrahimi M, Willershausen D, Ashaghi K S, Engel L, Placido L, Mund P, Bolduan P, Czermak P. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination, 2010, 250(3): 991–996

    CAS  Article  Google Scholar 

  6. 6.

    Cao D, Jin J, Wang Q, Song X, Hao X, Iritani E, Katagiri N. Ultrafiltration recovery of alginate: membrane fouling mitigation by multivalent metal ions and properties of recycled materials. Chinese Journal of Chemical Engineering, 2020, 28(11): 2881–2889

    Article  Google Scholar 

  7. 7.

    Nasiri M, Jafari I, Parniankhoy B. Oil and gas produced water management: a review of treatment technologies, challenges, and opportunities. Chemical Engineering Communications, 2017, 204(8): 990–1005

    CAS  Article  Google Scholar 

  8. 8.

    Ozgun H, Ersahin M E, Erdem S, Atay B, Kose B, Kaya R, Altinbas M, Sayili S, Hoshan P, Atay D, et al. Effects of the pretreatment alternatives on the treatment of oil-gas field produced water by nanofiltration and reverse osmosis membranes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(8): 1576–1583

    CAS  Article  Google Scholar 

  9. 9.

    Liu B, Chen C, Zhao P, Li T, Liu C, Wang Q, Chen Y, Crittenden J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574

    CAS  Article  Google Scholar 

  10. 10.

    Taherian M, Mousavi S M, Chamani H. An agent-based simulation with NetLogo platform to evaluate forward osmosis process (PRO Mode). Chinese Journal of Chemical Engineering, 2018, 26(12): 2487–2494

    CAS  Article  Google Scholar 

  11. 11.

    Zhao D, Chen S, Guo C X, Zhao Q, Lu X. Multi-functional forward osmosis draw solutes for seawater desalination. Chinese Journal of Chemical Engineering, 2016, 24(1): 23–30

    CAS  Article  Google Scholar 

  12. 12.

    Long Q W, Shen L, Chen R, Huang J Q, Xiong S, Wang Y. Synthesis and application of organic phosphonate salts as draw solutes in forward osmosis for oil-water separation. Environmental Science & Technology, 2016, 50(21): 12022–12029

    CAS  Article  Google Scholar 

  13. 13.

    Coday B D, Xu P, Beaudry E G, Herron J, Lampi K, Hancock N T, Cath T Y. The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 2014, 333(1): 23–35

    CAS  Article  Google Scholar 

  14. 14.

    Lutchmiah K, Verliefde A, Roest K, Rietveld L C, Cornelissen E. Forward osmosis for application in wastewater treatment: a review. Water Research, 2014, 58: 179–197

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Korenak J, Basu S, Balakrishnan M, Hélix Nielsen C, Petrinic I. Forward osmosis in wastewater treatment processes. Acta Chimica Slovenica, 2017, 64(1): 83–94

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Hickenbottom K L, Hancock N T, Hutchings N R, Appleton E W, Beaudry E G, Xu P, Cath T Y. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 2013, 312: 60–66

    CAS  Article  Google Scholar 

  17. 17.

    Coday B D, Almaraz N, Cath T Y. Forward osmosis desalination of oil and gas wastewater: impacts of membrane selection and operating conditions on process performance. Journal of Membrane Science, 2015, 488: 40–55

    CAS  Article  Google Scholar 

  18. 18.

    Coday B D, Hoppe Jones C, Wandera D, Shethji J, Herron J, Lampi K, Snyder S A, Cath T Y. Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water. Journal of Membrane Science, 2016, 499: 491–502

    CAS  Article  Google Scholar 

  19. 19.

    Bell E A, Poynor T E, Newhart K B, Regnery J, Coday B D, Cath T Y. Produced water treatment using forward osmosis membranes: evaluation of extended-time performance and fouling. Journal of Membrane Science, 2017, 525: 77–88

    CAS  Article  Google Scholar 

  20. 20.

    Maltos R A, Regnery J, Almaraz N, Fox S, Schutter M, Cath T J, Veres M, Coday B D, Cath T Y. Produced water impact on membrane integrity during extended pilot testing of forward osmosis-reverse osmosis treatment. Desalination, 2018, 440: 99–110

    CAS  Article  Google Scholar 

  21. 21.

    Islam M S, Touati K, Rahaman M S. Feasibility of a hybrid membrane-based process (MF-FO-MD) for fracking wastewater treatment. Separation and Purification Technology, 2019, 229: 115802

    CAS  Article  Google Scholar 

  22. 22.

    Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G. Nom and TEP fouling of a forward osmosis (FO) membrane: foulant identification and cleaning. Journal of Membrane Science, 2012, 421: 217–224

    Article  CAS  Google Scholar 

  23. 23.

    Zaviska F, Chun Y, Heran M, Zou L. Using FO as pre-treatment of RO for high scaling potential brackish water: energy and performance optimization. Journal of Membrane Science, 2015, 492: 430–438

    CAS  Article  Google Scholar 

  24. 24.

    Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: opportunities and challenges. Journal of Membrane Science, 2012, 396: 1–21

    CAS  Article  Google Scholar 

  25. 25.

    Shaffer D L, Werber J R, Jaramillo H, Lin S, Elimelech M. Forward osmosis: where are we now? Desalination, 2015, 356: 271–284

    CAS  Article  Google Scholar 

  26. 26.

    Ansari A J, Hai F I, Price W E, Drewes J E, Nghiem L D. Forward osmosis as a platform for resource recovery from municipal wastewater—a critical assessment of the literature. Journal of Membrane Science, 2017, 529: 195–206

    CAS  Article  Google Scholar 

  27. 27.

    Valladares Linares R, Li Z, Sarp S, Bucs S S, Amy G, Vrouwenvelder J S. Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 2014, 66: 122–139

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    She Q, Wang R, Fane A G, Tang C Y. Membrane fouling in osmotically driven membrane processes: a review. Journal of Membrane Science, 2016, 499: 201–233

    CAS  Article  Google Scholar 

  29. 29.

    Li L, Liu X P, Li H Q. A review of forward osmosis membrane fouling: types, research methods and future prospects. Environmental Technology Reviews, 2017, 6(1): 26–46

    CAS  Article  Google Scholar 

  30. 30.

    Chen Q, Xu W, Ge Q. Novel multicharge hydroacid complexes that effectively remove heavy metal ions from water in forward osmosis processes. Environmental Science & Technology, 2018, 52(7): 4464–4471

    CAS  Article  Google Scholar 

  31. 31.

    Ding C, Zhang X, Shen L, Huang J, Lu A, Zhong F, Wang Y. Application of polysaccharide derivatives as novel draw solutes in forward osmosis for desalination and protein concentration. Chemical Engineering Research & Design, 2019, 146: 211–220

    CAS  Article  Google Scholar 

  32. 32.

    Xu W, Chen Q, Ge Q. Recent advances in forward osmosis (FO) membrane: chemical modifications on membranes for FO processes. Desalination, 2017, 419: 101–116

    CAS  Article  Google Scholar 

  33. 33.

    Gu Y, Wang Y N, Wei J, Tang C Y. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. Water Research, 2013, 47(5): 1867–1874

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Wang Z, Tang J, Zhu C, Dong Y, Wang Q, Wu Z. Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment. Journal of Membrane Science, 2015, 475: 184–192

    CAS  Article  Google Scholar 

  35. 35.

    Wang Y N, Li X, Wang R. Silica scaling and scaling control in pressure retarded osmosis processes. Journal of Membrane Science, 2017, 541: 73–84

    CAS  Article  Google Scholar 

  36. 36.

    Fam W, Phuntsho S, Lee J H, Shon H K. Performance comparison of thin-film composite forward osmosis membranes. Desalination and Water Treatment, 2013, 51(31–33): 6274–6280

    CAS  Article  Google Scholar 

  37. 37.

    Munoz Elguera A, Nunez A, Nishida M. Experimental test of Toyobo membranes for seawater desalination at Las Palmas, Spain. Desalination, 1999, 125(1–3): 55–64

    Article  Google Scholar 

  38. 38.

    Ren J, McCutcheon J R. A new commercial thin film composite membrane for forward osmosis. Desalination, 2014, 343: 187–193

    CAS  Article  Google Scholar 

  39. 39.

    Yap W J, Zhang J, Lay W C, Cao B, Fane A G, Liu Y. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kedwell K C, Quist-Jensen C A, Giannakakis G, Christensen M L. Forward osmosis with high-performing TFC membranes for concentration of digester centrate prior to phosphorus recovery. Separation and Purification Technology, 2018, 197: 449–456

    CAS  Article  Google Scholar 

  41. 41.

    Ren J, McCutcheon J R. A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination, 2018, 442: 44–50

    CAS  Article  Google Scholar 

  42. 42.

    Zhang X, Shen L, Guan C Y, Liu C X, Lang W Z, Wang Y. Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. Journal of Membrane Science, 2018, 564: 328–341

    CAS  Article  Google Scholar 

  43. 43.

    Zhang X, Xiong S, Liu C X, Shen L, Ding C, Guan C Y, Wang Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chemical Engineering Science, 2019, 207: 54–68

    CAS  Article  Google Scholar 

  44. 44.

    Zhang X, Shen L, Lang W Z, Wang Y. Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process. Journal of Membrane Science, 2017, 535: 188–199

    CAS  Article  Google Scholar 

  45. 45.

    Soroush A, Ma W, Silvino Y, Rahaman M S. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environmental Science. Nano, 2015, 2(4): 395–405

    CAS  Article  Google Scholar 

  46. 46.

    Nguyen A, Azari S, Zou L. Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane. Desalination, 2013, 312: 82–87

    CAS  Article  Google Scholar 

  47. 47.

    Shen L, Hung W S, Zuo J, Zhang X, Lai J Y, Wang Y. Highperformance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. Journal of Membrane Science, 2019, 570–571: 112–119

    Article  CAS  Google Scholar 

  48. 48.

    Xiong S, Xu S, Zhang S, Phommachanh A, Wang Y. Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. Journal of Membrane Science, 2019, 572: 281–290

    CAS  Article  Google Scholar 

  49. 49.

    Ding C, Zhang X, Xiong S, Shen L, Yi M, Liu B, Wang Y. Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis. Journal of Membrane Science, 2019, 593: 117429

    Article  CAS  Google Scholar 

  50. 50.

    Zhang M, She Q, Yan X, Tang C Y. Effect of reverse solute diffusion on scaling in forward osmosis: a new control strategy by tailoring draw solution chemistry. Desalination, 2017, 401: 230–237

    CAS  Article  Google Scholar 

  51. 51.

    Ge Q, Lau C H, Liu M. A novel multi-charged draw solute that removes organic arsenicals from water in a hybrid membrane process. Environmental Science & Technology, 2018, 52(6): 3812–3819

    CAS  Article  Google Scholar 

  52. 52.

    Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination. Desalination, 2011, 278(1–3): 157–164

    CAS  Article  Google Scholar 

  53. 53.

    Xu Y, Peng X, Tang C Y, Fu Q S, Nie S. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. Journal of Membrane Science, 2010, 348(1–2): 298–309

    CAS  Article  Google Scholar 

  54. 54.

    Ge Q, Ling M, Chung T S. Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. Journal of Membrane Science, 2013, 442: 225–237

    CAS  Article  Google Scholar 

  55. 55.

    Xia L L, Li C L, Wang Y. In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations. Journal of Membrane Science, 2016, 498: 263–275

    CAS  Article  Google Scholar 

  56. 56.

    Johnson D J, Suwaileh W A, Mohammed A W, Hilal N. Osmotic’s potential: an overview of draw solutes for forward osmosis. Desalination, 2018, 434: 100–120

    CAS  Article  Google Scholar 

  57. 57.

    Kravath R E, Davis J A. Desalination of sea water by direct osmosis. Desalination, 1975, 16(2): 151–155

    CAS  Article  Google Scholar 

  58. 58.

    Tang W, Ng H Y. Concentration of brine by forward osmosis: performance and influence of membrane structure. Desalination, 2008, 224(1–3): 143–153

    CAS  Article  Google Scholar 

  59. 59.

    Garcia Castello E M, McCutcheon J R, Elimelech M. Performance evaluation of sucrose concentration using forward osmosis. Journal of Membrane Science, 2009, 338(1–2): 61–66

    CAS  Article  Google Scholar 

  60. 60.

    McCutcheon J R, McGinnis R L, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 2006, 278(1–2): 114–123

    CAS  Article  Google Scholar 

  61. 61.

    McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination, 2005, 174(1): 1–11

    CAS  Article  Google Scholar 

  62. 62.

    Tan C, Ng H. A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration. Desalination and Water Treatment, 2010, 13 (1–3): 356–361

    CAS  Article  Google Scholar 

  63. 63.

    Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 2011, 375(1–2): 172–181

    CAS  Article  Google Scholar 

  64. 64.

    Kim Y, Chekli L, Shim W G, Phuntsho S, Li S, Ghaffour N, Leiknes T, Shon H K. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system. Bioresource Technology, 2016, 210: 26–34

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ge Q, Wang P, Wan C, Chung T S. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. Environmental Science & Technology, 2012, 46(11): 6236–6243

    CAS  Article  Google Scholar 

  66. 66.

    Huang J Q, Long Q W, Xiong S, Shen L, Wang Y. Application of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt as novel draw solute in forward osmosis for dye-containing wastewater treatment. Desalination, 2017, 421: 40–46

    CAS  Article  Google Scholar 

  67. 67.

    Zhao D, Chen S, Wang P, Zhao Q, Lu X. A dendrimer-based forward osmosis draw solute for seawater desalination. Industrial & Engineering Chemistry Research, 2014, 53(42): 16170–16175

    CAS  Article  Google Scholar 

  68. 68.

    Hau N T, Chen S S, Nguyen N C, Huang K Z, Ngo H H, Guo W. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 2014, 455: 305–311

    Article  CAS  Google Scholar 

  69. 69.

    Long Q, Wang Y. Sodium tetraethylenepentamine heptaacetate as novel draw solute for forward osmosis—synthesis, application and recovery. Energies, 2015, 8(11): 12917–12928

    CAS  Article  Google Scholar 

  70. 70.

    Long Q W, Wang Y. Novel carboxyethyl amine sodium salts as draw solutes with superior forward osmosis performance. AIChE Journal, 2016, 62(4): 1226–1235

    CAS  Article  Google Scholar 

  71. 71.

    Huang J, Xiong S, Long Q, Shen L, Wang Y. Evaluation of food additive sodium phytate as a novel draw solute for forward osmosis. Desalination, 2018, 448: 87–92

    CAS  Article  Google Scholar 

  72. 72.

    Ge Q, Yang L, Cai J, Xu W, Chen Q, Liu M. Hydroacid magnetic nanoparticles in forward osmosis for seawater desalination and efficient regeneration via integrated magnetic and membrane separations. Journal of Membrane Science, 2016, 520: 550–559

    CAS  Article  Google Scholar 

  73. 73.

    Ling M M, Wang K Y, Chung T S. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Industrial & Engineering Chemistry Research, 2010, 49(12): 5869–5876

    CAS  Article  Google Scholar 

  74. 74.

    Li D, Wang H. Smart draw agents for emerging forward osmosis application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(45): 14049–14060

    CAS  Article  Google Scholar 

  75. 75.

    Zhang H, Li J, Cui H, Li H, Yang F. Forward osmosis using electric-responsive polymer hydrogels as draw agents: influence of freezing-thawing cycles, voltage, feed solutions on process performance. Chemical Engineering Journal, 2015, 259: 814–819

    CAS  Article  Google Scholar 

  76. 76.

    Ou R, Wang Y, Wang H, Xu T. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. Desalination, 2013, 318: 48–55

    CAS  Article  Google Scholar 

  77. 77.

    Yang Y, Chen M, Zou S, Yang X, Long T E, He Z. Efficient recovery of polyelectrolyte draw solutes in forward osmosis towards sustainable water treatment. Desalination, 2017, 422: 134–141

    CAS  Article  Google Scholar 

  78. 78.

    Ge Q, Chung T S. Hydroacid complexes: a new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications, 2013, 49(76): 8471–8473

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Ge Q, Han G, Chung T S. Effective As(III) removal by a multi-charged hydroacid complex draw solute facilitated forward osmosis-membrane distillation (FO-MD) processes. Environmental Science & Technology, 2016, 50(5): 2363–2370

    CAS  Article  Google Scholar 

  80. 80.

    Hunter J V, Heukelekian H. The composition of domestic sewage fractions. Journal of the Water Pollution Control Federation, 1965: 1142–1163

  81. 81.

    Hench K R, Bissonnette G K, Sexstone A J, Coleman J G, Garbutt K, Skousen J G. Fate of physical, chemical, and microbial contaminants in domestic wastewater following treatment by small constructed wetlands. Water Research, 2003, 37(4): 921–927

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Sun Y, Tian J, Zhao Z, Shi W, Liu D, Cui F. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: a comparison between direct FO and OMBR. Water Research, 2016, 104: 330–339

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Ferrari F, Pijuan M, Rodriguez Roda I, Blandin G. Exploring submerged forward osmosis for water recovery and pre-concentration of wastewater before anaerobic digestion: a pilot scale study. Membranes (Basel), 2019, 9(97): 1–13

    Google Scholar 

  84. 84.

    Ab Hamid N H, Wang D K, Smart S, Ye L. Achieving stable operation and shortcut nitrogen removal in a long-term operated aerobic forward osmosis membrane bioreactor (FOMBR) for treating municipal wastewater. Chemosphere, 2020, 260: 127581

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Aftab B, Khan S J, Maqbool T, Hankins N P. High strength domestic wastewater treatment with submerged forward osmosis membrane bioreactor. Water Science and Technology, 2015, 72(1): 141–149

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Gao Y, Fang Z, Chen C, Zhu X, Liang P, Qiu Y, Zhang X, Huang X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. Bioresource Technology, 2020, 307: 123254

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Qiu G, Zhang S, Srinivasa Raghavan D S, Das S, Ting Y P. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level. Bioresource Technology, 2016, 219: 298–310

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Vinardell S, Astals S, Mata Alvarez J, Dosta J. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal waste-water treatment and water production. Bioresource Technology, 2020, 297: 122395

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Li J, Niu A, Lu C J, Zhang J H, Junaid M, Strauss P R, Xiao P, Wang X, Ren Y W, Pei D S. A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation. Chemosphere, 2017, 168: 112–121

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Iskander S M, Zou S, Brazil B, Novak J T, He Z. Energy consumption by forward osmosis treatment of landfill leachate for water recovery. Waste Management (New York, N.Y.), 2017, 63: 284–291

    CAS  Article  Google Scholar 

  91. 91.

    Zhou Y, Huang M, Deng Q, Cai T. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination, 2017, 420: 99–105

    CAS  Article  Google Scholar 

  92. 92.

    Iskander S M, Novak J T, He Z. Reduction of reagent requirements and sludge generation in fenton’s oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery. Water Research, 2019, 151: 310–317

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Wu S, Zou S, Liang G, Qian G, He Z. Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. Science of the Total Environment, 2018, 610–611: 137–146

    Article  CAS  Google Scholar 

  94. 94.

    Qin M, Molitor H, Brazil B, Novak J T, He Z. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system. Bioresource Technology, 2016, 200: 485–492

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Warner N R, Christie C A, Jackson R B, Vengosh A. Impacts of shale gas wastewater disposal on water quality in western pennsylvania. Environmental Science & Technology, 2013, 47 (20): 11849–11857

    CAS  Article  Google Scholar 

  96. 96.

    Torres L, Yadav O P, Khan E. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, 2016, 539: 478–493

    CAS  Article  Google Scholar 

  97. 97.

    Hagström E L, Lyles C, Pattanayek M, DeShields B, Berkman M P. Produced water—emerging challenges, risks, and opportunities. Environmental Claims Journal, 2016, 28(2): 122–139

    Article  Google Scholar 

  98. 98.

    Frederic E, Guigui C, Jacob M, Machinal C, Krifi A, Line A, Schmitz P. Modelling of fluid flow distribution in multichannel ceramic membrane: application to the filtration of produced water. Journal of Membrane Science, 2018, 567: 290–302

    CAS  Article  Google Scholar 

  99. 99.

    Lokare O R, Tavakkoli S, Wadekar S, Khanna V, Vidic R D. Fouling in direct contact membrane distillation of produced water from unconventional gas extraction. Journal of Membrane Science, 2017, 524: 493–501

    CAS  Article  Google Scholar 

  100. 100.

    Orem W, Tatu C, Varonka M, Lerch H, Bates A, Engle M, Crosby L, McIntosh J. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. International Journal of Coal Geology, 2014, 126: 20–31

    CAS  Article  Google Scholar 

  101. 101.

    Mondal S, Wickramasinghe S R. Produced water treatment by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2008, 322(1): 162–170

    CAS  Article  Google Scholar 

  102. 102.

    Zafar M S, Tausif M, Mohsin M, Ahmad S W, Zia-ul-Haq M. Potato starch as a coagulant for dye removal from textile wastewater. Water, Air, and Soil Pollution, 2015, 226(8): 244

    Article  CAS  Google Scholar 

  103. 103.

    Freitas T, Oliveira V, De Souza M, Geraldino H, Almeida V, Fávaro S, Garcia J. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 2015, 76: 538–544

    CAS  Article  Google Scholar 

  104. 104.

    Korenak J, Hélix Nielsen C, Bukšek H, Petrinić I. Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. Journal of Cleaner Production, 2019, 210: 1483–1495

    CAS  Article  Google Scholar 

  105. 105.

    Han G, Liang C Z, Chung T S, Weber M, Staudt C, Maletzko C. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 2016, 91: 361–370

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Roberts R, Johnson M. Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environmental Pollution (1970), 1978, 16(4): 293–310

    CAS  Article  Google Scholar 

  107. 107.

    Vital B, Bartacek J, Ortega Bravo J C, Jeison D. Treatment of acid mine drainage by forward osmosis: heavy metal rejection and reverse flux of draw solution constituents. Chemical Engineering Journal, 2018, 332: 85–91

    CAS  Article  Google Scholar 

  108. 108.

    Phuntsho S, Kim J E, Johir M A H, Hong S, Li Z, Ghaffour N, Leiknes T, Shon H K. Fertiliser drawn forward osmosis process: pilot-scale desalination of mine impaired water for fertigation. Journal of Membrane Science, 2016, 508: 22–31

    CAS  Article  Google Scholar 

  109. 109.

    Kim J E, Phuntsho S, Chekli L, Choi J Y, Shon H K. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water. Desalination, 2018, 429: 96–104

    CAS  Article  Google Scholar 

  110. 110.

    Lee S, Kim Y, Park J, Shon H K, Hong S. Treatment of medical radioactive liquid waste using forward osmosis (FO) membrane process. Journal of Membrane Science, 2018, 556: 238–247

    CAS  Article  Google Scholar 

  111. 111.

    Liu X, Wu J, Wang J. Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes. Chemical Engineering Journal, 2018, 344: 353–362

    CAS  Article  Google Scholar 

  112. 112.

    Mi B, Elimelech M. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1–2): 337–345

    CAS  Article  Google Scholar 

  113. 113.

    Chen L, Gu Y, Cao C, Zhang J, Ng J W, Tang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Research, 2014, 50: 114–123

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Qiu G, Law Y M, Das S, Ting Y P. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental Science & Technology, 2015, 49(10): 6156–6163

    CAS  Article  Google Scholar 

  115. 115.

    Li X M, Zhao B, Wang Z, Xie M, Song J, Nghiem L D, He T, Yang C, Li C, Chen G. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system. Water Science and Technology, 2014, 69 (5): 1036–1044

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Minier-Matar J, Hussain A, Janson A, Wang R, Fane A G, Adham S. Application of forward osmosis for reducing volume of produced/process water from oil and gas operations. Desalination, 2015, 376: 1–8

    CAS  Article  Google Scholar 

  117. 117.

    Chiao Y H, Chen S T, Patra T, Hsu C H, Sengupta A, Hung W S, Huang S H, Qian X, Wickramasinghe R, Chang Y, et al. Zwitterionic forward osmosis membrane modified by fast second interfacial polymerization with enhanced antifouling and antimicrobial properties for produced water pretreatment. Desalination, 2019, 469: 114090

    CAS  Article  Google Scholar 

  118. 118.

    Lu D, Liu Q, Zhao Y, Liu H, Ma J. Treatment and energy utilization of oily water via integrated ultrafiltration-forward osmosis-membrane distillation (UF-FO-MD) system. Journal of Membrane Science, 2018, 548: 275–287

    CAS  Article  Google Scholar 

  119. 119.

    Jin X, She Q, Ang X, Tang C Y. Removal of boron and arsenic by forward osmosis membrane: influence of membrane orientation and organic fouling. Journal of Membrane Science, 2012, 389: 182–187

    CAS  Article  Google Scholar 

  120. 120.

    Chen D, Werber J R, Zhao X, Elimelech M. A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. Journal of Membrane Science, 2017, 534: 100–108

    CAS  Article  Google Scholar 

  121. 121.

    Mi B, Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis membranes. Journal of Membrane Science, 2008, 320(1–2): 292–302

    CAS  Article  Google Scholar 

  122. 122.

    Shaffer D L, Tousley M E, Elimelech M. Influence of polyamide membrane surface chemistry on gypsum scaling behavior. Journal of Membrane Science, 2017, 525: 249–256

    CAS  Article  Google Scholar 

  123. 123.

    Gwak G, Hong S. New approach for scaling control in forward osmosis (FO) by using an antiscalant-blended draw solution. Journal of Membrane Science, 2017, 530: 95–103

    CAS  Article  Google Scholar 

  124. 124.

    Kim Y, Woo Y C, Phuntsho S, Nghiem L D, Shon H K, Hong S. Evaluation of fertilizer-drawn forward osmosis for coal seam gas reverse osmosis brine treatment and sustainable agricultural reuse. Journal of Membrane Science, 2017, 537: 22–31

    CAS  Article  Google Scholar 

  125. 125.

    Zhang Q, Jie Y W, Loong W L, Zhang J, Fane A G, Kjelleberg S, Rice S A, McDougald D. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). Water Research, 2014, 58: 141–151

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Zhang J, Loong W L C, Chou S, Tang C, Wang R, Fane A G. Membrane biofouling and scaling in forward osmosis membrane bioreactor. Journal of Membrane Science, 2012, 403–404: 8–14

    Article  CAS  Google Scholar 

  127. 127.

    Sardari K, Fyfe P, Lincicome D, Wickramasinghe S R. Aluminum electrocoagulation followed by forward osmosis for treating hydraulic fracturing produced waters. Desalination, 2018, 428: 172–181

    CAS  Article  Google Scholar 

  128. 128.

    Liden T, Hildenbrand Z L, Schug K A. Pretreatment techniques for produced water with subsequent forward osmosis remediation. Water (Basel), 2019, 11(7): 1437

    CAS  Google Scholar 

  129. 129.

    Sun F, Lu D, Ho J S, Chong T H, Zhou Y. Mitigation of membrane fouling in a seawater-driven forward osmosis system for waste activated sludge thickening. Journal of Cleaner Production, 2019, 241: 118373

    CAS  Article  Google Scholar 

  130. 130.

    Im S J, Rho H, Jeong S, Jang A. Organic fouling characterization of a CTA-based spiral-wound forward osmosis (SWFO) membrane used in wastewater reuse and seawater desalination. Chemical Engineering Journal, 2018, 336: 141–151

    CAS  Article  Google Scholar 

  131. 131.

    Law J Y, Mohammad A W, Tee Z K, Zaman N K, Jahim J M, Santanaraj J, Sajab M S. Recovery of succinic acid from fermentation broth by forward osmosis-assisted crystallization process. Journal of Membrane Science, 2019, 583: 139–151

    CAS  Article  Google Scholar 

  132. 132.

    Bansal R C, Goyal M. Activated Carbon Adsorption. 1st ed. Boca Raton: CRC Press Inc., 2005, 1–472

    Book  Google Scholar 

  133. 133.

    Achilli A, Cath T Y, Marchand E A, Childress A E. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 2009, 239(1–3): 10–21

    CAS  Article  Google Scholar 

  134. 134.

    Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 2010, 365(1–2): 34–39

    CAS  Article  Google Scholar 

  135. 135.

    Liden T, JrCarlton D D, Miyazaki S, Otoyo T, Schug K A. Comparison of the degree of fouling at various flux rates and modes of operation using forward osmosis for remediation of produced water from unconventional oil and gas development. Science of the Total Environment, 2019, 675: 73–80

    CAS  Article  Google Scholar 

  136. 136.

    Boo C, Elimelech M, Hong S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 2013, 444: 148–156

    CAS  Article  Google Scholar 

  137. 137.

    Ansari A J, Hai F I, He T, Price W E, Nghiem L D. Physical cleaning techniques to control fouling during the pre-concentration of high suspended-solid content solutions for resource recovery by forward osmosis. Desalination, 2018, 429: 134–141

    CAS  Article  Google Scholar 

  138. 138.

    Aftab B, Cho J, Hur J. Intermittent osmotic relaxation: a strategy for organic fouling mitigation in a forward osmosis system treating landfill leachate. Desalination, 2020, 482: 114406

    CAS  Article  Google Scholar 

  139. 139.

    Ryu H, Kim K, Cho H, Park E, Chang Y K, Han J I. Nutrient-driven forward osmosis coupled with microalgae cultivation for energy efficient dewatering of microalgae. Algal Research, 2020, 48: 101880

    Article  Google Scholar 

  140. 140.

    Motsa M M, Mamba B B, D’Haese A, Hoek E M, Verliefde A R. Organic fouling in forward osmosis membranes: the role of feed solution chemistry and membrane structural properties. Journal of Membrane Science, 2014, 460: 99–109

    CAS  Article  Google Scholar 

  141. 141.

    Chun Y, Mulcahy D, Zou L, Kim I S. A short review of membrane fouling in forward osmosis processes. Membranes, 2017, 7(2): 30

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  142. 142.

    Chen G, Wang Z, Nghiem L D, Li X M, Xie M, Zhao B, Zhang M, Song J, He T. Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: membrane fouling and mitigation. Desalination, 2015, 366: 113–120

    CAS  Article  Google Scholar 

  143. 143.

    Duong P H H, Chung T S. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water. Journal of Membrane Science, 2014, 452: 117–126

    CAS  Article  Google Scholar 

  144. 144.

    Shakeri A, Salehi H, Ghorbani F, Amini M, Naslhajian H. Polyoxometalate based thin film nanocomposite forward osmosis membrane: superhydrophilic, anti-fouling, and high water permeable. Journal of Colloid and Interface Science, 2019, 536: 328–338

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Shen L, Wang F, Tian L, Zhang X, Ding C, Wang Y. Highperformance thin-film composite membranes with surface functionalization by organic phosphonic acids. Journal of Membrane Science, 2018, 563: 284–297

    CAS  Article  Google Scholar 

  146. 146.

    Tiraferri A, Kang Y, Giannelis E P, Elimelech M. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Applied Materials & Interfaces, 2012, 4(9): 5044–5053

    CAS  Article  Google Scholar 

  147. 147.

    Xiong S, Xu S, Phommachanh A, Yi M, Wang Y. Versatile surface modification of TFC membrane by layer-by-layer assembly of phytic acid-metal complexes for comprehensively enhanced FO performance. Environmental Science & Technology, 2019, 53(6): 3331–3341

    CAS  Article  Google Scholar 

  148. 148.

    Yang E, Chae K J, Alayande A B, Kim K Y, Kim I S. Concurrent performance improvement and biofouling mitigation in osmotic microbial fuel cells using a silver nanoparticle-polydopamine coated forward osmosis membrane. Journal of Membrane Science, 2016, 513: 217–225

    CAS  Article  Google Scholar 

  149. 149.

    Zhang X, Gao S, Tian J, Shan S, Takagi R, Cui F, Bai L, Matsuyama H. Investigation of cleaning strategies for an antifouling thin-film composite forward osmosis membrane for treatment of polymer-flooding produced water. Industrial & Engineering Chemistry Research, 2018, 58(2): 994–1003

    Article  CAS  Google Scholar 

  150. 150.

    Guo H, Yao Z, Wang J, Yang Z, Ma X, Tang C Y. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018, 551: 234–242

    CAS  Article  Google Scholar 

  151. 151.

    Mccloskey B D. Novel surface modifications and materials for fouling resistant water purification membranes. Dissertation for the Doctoral Degree. Austin: The University of Texas, 2010, 413–414 (9): 82–90

    Google Scholar 

  152. 152.

    Tiraferri A, Kang Y, Giannelis E P, Elimelech M. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 2012, 46(20): 11135–11144

    CAS  Article  Google Scholar 

  153. 153.

    Mi B, Elimelech M. Silica scaling and scaling reversibility in forward osmosis. Desalination, 2013, 312: 75–81

    CAS  Article  Google Scholar 

  154. 154.

    Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environmental Science & Technology, 2010, 44(6): 2022–2028

    CAS  Article  Google Scholar 

  155. 155.

    Yoon H, Baek Y, Yu J, Yoon J. Biofouling occurrence process and its control in the forward osmosis. Desalination, 2013, 325: 30–36

    CAS  Article  Google Scholar 

  156. 156.

    Zhao P, Gao B, Yue Q, Shon H K. The performance of forward osmosis process in treating the surfactant wastewater: the rejection of surfactant, water flux and physical cleaning effectiveness. Chemical Engineering Journal, 2015, 281: 688–695

    CAS  Article  Google Scholar 

  157. 157.

    Singh N, Petrinic I, Helix Nielsen C, Basu S, Balakrishnan M. Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Research, 2018, 130: 271–280

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Kim C, Lee S, Hong S. Application of osmotic backwashing in forward osmosis: mechanisms and factors involved. Desalination and Water Treatment, 2012, 43(1–3): 314–322

    CAS  Article  Google Scholar 

  159. 159.

    Motsa M M, Mamba B B, Thwala J M, Verliefde A R. Osmotic backwash of fouled FO membranes: cleaning mechanisms and membrane surface properties after cleaning. Desalination, 2017, 402: 62–71

    CAS  Article  Google Scholar 

  160. 160.

    Jiang Y, Liang J, Liu Y. Application of forward osmosis membrane technology for oil sands process-affected water desalination. Water Science and Technology, 2016, 73(8): 1809–1816

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Zhao S, Minier Matar J, Chou S, Wang R, Fane A G, Adham S. Gas field produced/process water treatment using forward osmosis hollow fiber membrane: membrane fouling and chemical cleaning. Desalination, 2017, 402: 143–151

    CAS  Article  Google Scholar 

  162. 162.

    Wang X, Hu T, Wang Z, Li X, Ren Y. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Research, 2017, 123: 505–512

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Kim Y, Li S, Ghaffour N. Evaluation of different cleaning strategies for different types of forward osmosis membrane fouling and scaling. Journal of Membrane Science, 2020, 596: 117731

    CAS  Article  Google Scholar 

  164. 164.

    Martinetti C R, Childress A E, Cath T Y. High recovery of concentrated RO brines using forward osmosis and membrane distillation. Journal of Membrane Science, 2009, 331(1–2): 31–39

    CAS  Article  Google Scholar 

  165. 165.

    Dong Y, Wang Z, Zhu C, Wang Q, Tang J, Wu Z. A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate. Journal of Membrane Science, 2014, 471: 192–200

    CAS  Article  Google Scholar 

  166. 166.

    Holloway R W, Achilli A, Cath T Y. The osmotic membrane bioreactor: a critical review. Environmental Science. Water Research & Technology, 2015, 1(5): 581–605

    CAS  Article  Google Scholar 

  167. 167.

    Gwak G, Jung B, Han S, Hong S. Evaluation of poly(aspartic acid sodium salt) as a draw solute for forward osmosis. Water Research, 2015, 80: 294–305

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from National Key Research and Development Program of China (Grant Nos. 2020YFB1709301 and 2020YFB1709304).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Ding, C., Zhu, T. et al. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-021-2084-4

Download citation

Keywords

  • forward osmosis
  • wastewater treatment
  • membrane fouling
  • fouling control