Skip to main content

Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor

Abstract

Carbon-coated Ni, Co and Ni-Co alloy catalysts were prepared by the carbonization of the metal doped resorcinol-formaldehyde resins synthesized by the one-pot extended Stöber method. It was found that the introduction of Co remarkably reduced the carbon microsphere size. The metallic Ni, Co, and Ni-Co alloy particles (mainly 10–12 nm) were uniformly distributed in carbon microspheres. A charge transfer from Ni to Co appeared in the Ni-Co alloy. Compared with those of metallic Ni and Co, the d-band center of the Ni-Co alloy shifted away from and toward the Fermi level, respectively. In the in-situ aqueous phase hydrodeoxygenation of methyl palmitate with methanol as the hydrogen donor at 330 °C, the decarbonylation/decarboxylation pathway dominated on all catalysts. The Ni-Co@C catalysts gave higher activity than the Ni@C and Co@C catalysts, and the yields of n-pentadecane and n-C6-n-C16 reached 71.6% and 92.6%, respectively. The excellent performance of Ni-Co@C is attributed to the electronic interactions between Ni and Co and the small carbon microspheres. Due to the confinement effect of carbon, the metal particles showed high resistance to sintering under harsh hydrothermal conditions. Catalyst deactivation is due to the carbonaceous deposition, and the regeneration with CO2 recovered the catalyst reactivity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    De S, Saha B, Luque R. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 2015, 178: 108–118

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Kordulis C, Bourikas K, Gousi M, Kordouli E, Lycourghiotis A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental, 2016, 181: 156–196

    CAS  Article  Google Scholar 

  3. 3.

    Hwang K R, Choi I H, Choi H Y, Han J S, Lee K H, Lee J S. Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source. Fuel, 2016, 174: 107–113

    CAS  Article  Google Scholar 

  4. 4.

    Zhang Z, Chen H, Wang C, Chen K, Lu X, Ouyang P, Fu J. Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 2018, 230: 211–217

    CAS  Article  Google Scholar 

  5. 5.

    Zhang Z, Yang Q, Chen H, Chen K, Lu X, Ouyang P, Fu J, Chen J G. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20(1): 197–205

    CAS  Article  Google Scholar 

  6. 6.

    Ai L, Shi Y, Han Y, Chen J. In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO3 perovskite. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 209–227

    CAS  Article  Google Scholar 

  7. 7.

    Fu J, Lu X, Savage P E. Catalytic hydrothermal deoxygenation of palmitic acid. Energy & Environmental Science, 2010, 3(3): 311–317

    CAS  Article  Google Scholar 

  8. 8.

    Zhang J, Huo X, Li Y, Strathmann T J. Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14400–14410

    CAS  Article  Google Scholar 

  9. 9.

    Hollak S A, Ariëns M A, De Jong K P, Van Es D S. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 2014, 7(4): 1057–1062

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Peterson A A, Vogel F, Lachance R P, Fröling M, Antal M J Jr, Tester J W. Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy & Environmental Science, 2008, 1(1): 32–65

    CAS  Article  Google Scholar 

  11. 11.

    Xiong H, Pham H N, Datye A K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chemistry, 2014, 16(11): 4627–4643

    CAS  Article  Google Scholar 

  12. 12.

    Zhang J, Tian F, Chen J, Shi Y, Cao H, Ning P, Sun S, Xie Y. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Frontiers of Chemical Science and Engineering, 2021, 15(2): 288–298

    CAS  Article  Google Scholar 

  13. 13.

    Koichumanova K, Vikla A K K, De Vlieger D J, Seshan K, Mojet B L, Lefferts L. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen. ChemSusChem, 2013, 6(9): 1717–1723

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hahn M W, Copeland J R, Van Pelt A H, Sievers C. Stability of amorphous silica-alumina in hot liquid water. ChemSusChem, 2013, 6(12): 2304–2315

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Vardon D R, Sharma B K, Jaramillo H, Kim D, Choe J K, Ciesielski P N, Strathmann T J. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 2014, 16(3): 1507–1520

    CAS  Article  Google Scholar 

  16. 16.

    Miao C, Marin F O, Dong T, Gao D, Wang Y, Garcia P M, Chen S. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with situ H2. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521–4530

    CAS  Article  Google Scholar 

  17. 17.

    Li S, Gong J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chemical Society Reviews, 2014, 43(21): 7245–7256

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Li Z, Wang Z, Kawi S. Sintering and coke resistant core/yolk shell catalyst for hydrocarbon reforming. ChemCatChem, 2019, 11(1): 202–224

    CAS  Article  Google Scholar 

  19. 19.

    Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D, Lu G Q M. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Liu M, Cai C, Li J, Zhao J, Teng W, Liu R. Stöber synthesis of tannic acid-formaldehyde resin polymer spheres and their derived carbon nanospheres and nanocomposites for oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 528: 1–9

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Dassanayake A C, Gonçalves A A S, Fox J, Jaroniec M. One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 582: 123884

    CAS  Article  Google Scholar 

  22. 22.

    Ghimire P P, Gao M, Jaroniec M. Amino acid-assisted synthesis of porous graphitic carbon spheres with highly dispersed Ni nanoparticles. Carbon, 2019, 153: 206–216

    CAS  Article  Google Scholar 

  23. 23.

    Zhao N, Zheng Y, Chen J. Remarkably reducing carbon loss and H2 consumption on Ni-Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons. Journal of Energy Chemistry, 2020, 41: 194–208

    Article  Google Scholar 

  24. 24.

    Wang L, Niu X, Chen J. SiO2 supported Ni-In intermetallic compounds: efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols. Applied Catalysis B: Environmental, 2020, 278: 119293

    CAS  Article  Google Scholar 

  25. 25.

    Zhou M, Ye J, Liu P, Xu J, Jiang J. Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8824–8835

    CAS  Article  Google Scholar 

  26. 26.

    Blanco E, Dongil A B, Escalona N. Synergy between Ni and Co nanoparticles supported on carbon in guaiacol conversion. Nano-materials (Basel, Switzerland), 2020, 10(11): 2199

    CAS  Google Scholar 

  27. 27.

    Haynes W M. CRC Handbook of Chemistry and Physics. 97th ed. Florida: CRC press, 2016, 5: 177–178

    Book  Google Scholar 

  28. 28.

    Singh J, Srivastav A N, Singh N, Singh A. Stability Constants of Metal Complexes in Solution. Intech Open, 2019, 3: 41–105

    Google Scholar 

  29. 29.

    Trick K A, Saliba T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon, 1995, 33(11): 1509–1515

    CAS  Article  Google Scholar 

  30. 30.

    Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez R F, Rouquerol J, Sing K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069

    CAS  Article  Google Scholar 

  31. 31.

    Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review. B, 2001, 64(7): 075414

    Article  CAS  Google Scholar 

  32. 32.

    Riva R, Miessner H, Vitali R, Del Piero G. Metal-support interaction in Co/SiO2 and Co/TiO2. Applied Catalysis A, General, 2000, 196(1): 111–123

    CAS  Article  Google Scholar 

  33. 33.

    Hou Z. Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2. Applied Catalysis A, General, 2003, 253(2): 381–387

    CAS  Article  Google Scholar 

  34. 34.

    Liu M, Zhang J, Zheng L, Fan G, Yang L, Li F. Significant promotion of surface oxygen vacancies on bimetallic CoNi nanocatalysts for hydrodeoxygenation of biomass-derived vanillin to produce methylcyclohexanol. ACS Sustainable Chemistry & Engineering, 2020, 8(15): 6075–6089

    CAS  Article  Google Scholar 

  35. 35.

    Chen C, Fan R, Han M, Zhu X, Zhang Y, Zhang H, Zhao H, Wang G. Tunable synthesis of imines and secondary-amines from tandem hydrogenation-coupling of aromatic nitro and aldehyde over NiCo5 bi-metallic catalyst. Applied Catalysis B: Environmental, 2021, 280: 119448

    CAS  Article  Google Scholar 

  36. 36.

    Wu X, Chen F, Zhang N, Lei Y, Jin Y, Qaseem A, Johnston R L. Activity trends of binary silver alloy nanocatalysts for oxygen reduction reaction in alkaline media. Small, 2017, 13(15): 1603387

    Article  CAS  Google Scholar 

  37. 37.

    Takigawa I, Shimizu K I, Tsuda K, Takakusagi S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Advances, 2016, 6(58): 52587–52595

    CAS  Article  Google Scholar 

  38. 38.

    Pan Z, Wang R, Chen J. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 2018, 224: 88–100

    CAS  Article  Google Scholar 

  39. 39.

    Gosselink R W, Hollak S A, Chang S W, Van Haveren J, De Jong K P, Bitter J H, Van Es D S. Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem, 2013, 6(9): 1576–1594

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Rozmysłowicz B, Maki-Arvela P, Tokarev A, Leino A R, Eränen K, Murzin D Y. Influence of hydrogen in catalytic deoxygenation of fatty acids and their derivatives over Pd/C. Industrial & Engineering Chemistry Research, 2012, 51(26): 8922–8927

    Article  CAS  Google Scholar 

  41. 41.

    Augusto B L, Ribeiro M C, Aires F J C S, Da Silva V T, Noronha F B. Hydrogen production by the steam reforming of ethanol over cobalt catalysts supported on different carbon nanostructures. Catalysis Today, 2020, 344: 66–74

    CAS  Article  Google Scholar 

  42. 42.

    Yang Y, Chiang K, Burke N. Porous carbon-supported catalysts for energy and environmental applications: a short review. Catalysis Today, 2011, 178(1): 197–205

    CAS  Article  Google Scholar 

  43. 43.

    Fu T, Jiang Y, Lv J, Li Z. Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts. Fuel Processing Technology, 2013, 110: 141–149

    CAS  Article  Google Scholar 

  44. 44.

    Hanzawa Y, Kaneko K, Pekala R W, Dresselhaus M S. Activated carbon aerogels. Langmuir, 1996, 12(26): 6167–6169

    CAS  Article  Google Scholar 

  45. 45.

    Maldonado-Hódar F, Moreno-Castilla C, Pérez-Cadenas A. Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Microporous and Mesoporous Materials, 2004, 69(1–2): 119–125

    Article  CAS  Google Scholar 

  46. 46.

    Kibler L A, El-Aziz A M, Hoyer R, Kolb D M. Tuning reaction rates by lateral strain in a palladium monolayer. Angewandte Chemie International Edition, 2005, 44(14): 2080–2084

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angewandte Chemie, 2018, 130(18): 5170–5174

    Article  Google Scholar 

  48. 48.

    Hofmann T, Yu T H, Folse M, Weinhardt L, Bär M, Zhang Y, Merinov B V, Myers D J, Goddard W A III, Heske C. Using photoelectron spectroscopy and quantum mechanics to determine d-band energies of metals for catalytic applications. Journal of Physical Chemistry C, 2012, 116(45): 24016–24026

    CAS  Article  Google Scholar 

  49. 49.

    Lai Q, Zhang C, Holles J H. Hydrodeoxygenation of guaiacol over Ni@Pd and Ni@Pt bimetallic overlayer catalysts. Applied Catalysis A, General, 2016, 528: 1–13

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 21576193 and 21176177).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jixiang Chen.

Electronic Supplementary Material

11705_2021_2079_MOESM1_ESM.pdf

Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Ai, L., Shi, H. et al. Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-021-2079-1

Download citation

Keywords

  • Stöber method
  • carbon-coated Ni-Co alloy
  • in-situ hydrodeoxygenation
  • methyl palmitate
  • decarbonylation/decarboxylation