Skip to main content
Log in

Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35 ± 2 kg·m−2·h−1 with a sodium chloride rejection of 99.9% ± 0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m−2·h−1 with a NaOH rejection over 99.98% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mathew M L, Gopalakrishnan A, Aravindakumar C T, Aravind U K. Low-cost multilayered green fiber for the treatment of textile industry waste water. Journal of Hazardous Materials, 2019, 365: 297–305

    Article  CAS  PubMed  Google Scholar 

  2. Buscio V, López Grimau V, Álvarez M D, Gutiérrez Bouzán C. Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chemical Engineering Journal, 2019, 373: 161–170

    Article  CAS  Google Scholar 

  3. Jia C, Chen C, Kuang Y, Fu K, Wang Y, Yao Y, Kronthal S, Hitz E, Song J, Xu F, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers. Advanced Materials, 2018, 30(30): 1801347

    Article  Google Scholar 

  4. Mirmohamadsadeghi S, Karimi K, Azarbaijani R, Parsa Yeganeh L, Angelidaki I, Nizami A S, Bhat R, Dashora K, Vijay V K, Aghbashlo M, et al. Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renewable & Sustainable Energy Reviews, 2021, 135: 110173

    Article  CAS  Google Scholar 

  5. Al Amshawee S, Yunus M Y B M, Azoddein A A M, Hassell D G, Dakhil I H, Hasan H A. Electrodialysis desalination for water and wastewater: a review. Chemical Engineering Journal, 2020, 380: 122231

    Article  CAS  Google Scholar 

  6. Hao J, Wu Y, Ran J, Wu B, Xu T. A simple and green preparation of PV A-based cation exchange hybrid membranes for alkali recovery. Journal of Membrane Science, 2013, 433: 10–16

    Article  CAS  Google Scholar 

  7. Padaki M, Surya Murali R, Abdullah M S, Misdan N, Moslehyani A, Kassim M A, Hilal N, Ismail A F. Membrane technology enhancement in oil-water separation: a review. Desalination, 2015, 357: 197–207

    Article  CAS  Google Scholar 

  8. He S, Jiang X, Li S, Ran F, Long J, Shao L. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(10): 16543

    Article  Google Scholar 

  9. Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, Songwei L, Shao L. A de novo sacrificial-MOF strategy to construct enhancedflux nanofiltration membranes for efficient dye removal. Chemical Engineering Science, 2020, 225: 115845

    Article  CAS  Google Scholar 

  10. Zhang Y, Cheng X, Jiang X, Urban J J, Lau C H, Liu S, Shao L. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47

    Article  CAS  Google Scholar 

  11. Wang J J, Yang H C, Wu M B, Zhang X, Xu Z K. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16289–16295

    Article  CAS  Google Scholar 

  12. Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72: 1–15

    Article  CAS  Google Scholar 

  13. Xu Y M, Japip S, Chung T S. UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. Journal of Membrane Science, 2020, 595: 117571

    Article  CAS  Google Scholar 

  14. Liang B, Li Q, Cao B, Li P. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination, 2018, 433: 132–140

    Article  CAS  Google Scholar 

  15. Xue Y, Lau C H, Cao B, Li P. Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. Journal of Membrane Science, 2019, 575: 135–146

    Article  CAS  Google Scholar 

  16. Zhang R, Xu X, Cao B, Li P. Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 2018, 15(1): 146–156

    Article  CAS  Google Scholar 

  17. Li Q, Cao B, Li P. Fabrication of high performance pervaporation desalination composite membranes by optimizing the support layer structures. Industrial & Engineering Chemistry Research, 2018, 57 (32): 11178–11185

    Article  CAS  Google Scholar 

  18. Meng J, Li P, Cao B. High-flux direct-contact pervaporation membranes for desalination. ACS Applied Materials & Interfaces, 2019, 11(31): 28461–28468

    Article  CAS  Google Scholar 

  19. Haleem N, Arshad M, Shahid M, Tahir M A. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydrate Polymers, 2014, 113: 249–255

    Article  CAS  PubMed  Google Scholar 

  20. Lakshmi D S, Trivedi N, Reddy C R K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydrate Polymers, 2017, 157: 1604–1610

    Article  CAS  PubMed  Google Scholar 

  21. Prasad C V, Sudhakar H, Swamy B Y, Reddy G V, Reddy C L N, Suryanarayana C, Prabhakar M N, Subha M C S, Rao K C. Miscibility studies of sodium carboxymethylcellulose/poly(vinyl alcohol) blend membranes for pervaporation dehydration of isopropyl alcohol. Journal of Applied Polymer Science, 2011, 120 (4): 2271–2281

    Article  CAS  Google Scholar 

  22. Zhang Y H, Yu C, Lu Z H, Yu S C. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalination and Water Treatment, 2016, 57(38): 17658–17669

    Article  CAS  Google Scholar 

  23. Gao F S. Study on novel negative charged composite nanofiltration membrane from chitin/CMC macromolecule. Dissertation for the Master Degree. Qingdao: Ocean University of China, 2007, 1–74

    Google Scholar 

  24. Zheng Z R, Gu Z Y, Huo R T, Luo Z S. Superhydrophobic poly (vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. Applied Surface Science, 2010, 256(7): 2061–2065

    Article  CAS  Google Scholar 

  25. Ross G J, Watts J F, Hill M P, Morrissey P. Surface modification of poly(vinylidene fluoride) by alkaline treatment. Part 2. Process modification by the use of phase transfer catalysts. Polymer, 2001, 42(2): 403–413

    Article  CAS  Google Scholar 

  26. Yin Q, Zhang Q, Cui Z L, Li W X, Xing W H. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. Polymer, 2017, 124: 128–138

    Article  CAS  Google Scholar 

  27. Zuo J, Bonyadi S, Chung T. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497: 239–247

    Article  CAS  Google Scholar 

  28. Li J M, Xu Z K, Liu Z M, Yuan W F, Xiang H, Wang S Y, Xu Y Y. Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination. Desalination, 2003, 155(2): 153–156

    Article  CAS  Google Scholar 

  29. Zuo J, Bonyadi S, Chung T S. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497: 239–247

    Article  CAS  Google Scholar 

  30. Park S H, Kwon S J, Shin M G, Park M S, Lee J S, Park C H, Park H, Lee J H. Polyethylene-supported high performance reverse osmosis membranes with enhanced mechanical and chemical durability. Desalination, 2018, 436: 28–38

    Article  CAS  Google Scholar 

  31. Kwon S J, Park S H, Park M S, Lee J S, Lee J. Highly permeable and mechanically durable forward osmosis membranes prepared using polyethylene lithium ion battery separators. Journal of Membrane Science, 2017, 544: 213–220

    Article  CAS  Google Scholar 

  32. Kwon S J, Park S H, Shin M G, Park M S, Park K, Hong S, Park H, Park Y I, Lee J. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. Journal of Membrane Science, 2019, 584: 89–99

    Article  CAS  Google Scholar 

  33. Li M S, Zhao Z P, Wang M X. Green hydrophilic modification of PE hollow fiber membranes in a module scale via long-distance and dynamic low-temperature H2O plasma flow. Applied Surface Science, 2016, 386: 187–195

    Article  CAS  Google Scholar 

  34. Sheng L, Song L, Gong H, Pan J, Bai Y, Song S, Liu G, Wang T, Huang X, He J. Polyethylene separator grafting with polar monomer for enhancing the lithium-ion transport property. Journal of Power Sources, 2020, 479: 228812

    Article  CAS  Google Scholar 

  35. Belmonte G K, Charles G, Strumia M C, Weibel D E. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation. Applied Surface Science, 2016, 382: 93–100

    Article  CAS  Google Scholar 

  36. Meng J, Lau C H, Xue Y, Zhang R, Cao B, Li P. Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(17): 8462–8468

    Article  CAS  Google Scholar 

  37. Yun Long X, Huang J, Lau C, Cao B, Li P. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nature Communications, 2020, 11(1): 1461

    Article  Google Scholar 

  38. Vetere A. Empirical method to correlate and to predict the vapor-liquid equilibrium and liquid-liquid equilibrium of binary amorpous polymer solutions. Industrial & Engineering Chemistry Research, 1998, 37(7): 2864–2872

    Article  CAS  Google Scholar 

  39. Amiri A, Triplett Z, Moreira A, Brezinka N, Alcock M, Ulven C A. Standard density measurement method development for flax fiber. Industrial Crops and Products, 2017, 96: 196–202

    Article  Google Scholar 

  40. Mulder M H V, Smolders C A. On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles. Journal of Membrane Science, 1984, 17(3): 289–307

    Article  CAS  Google Scholar 

  41. Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydrate Polymers, 2017, 155: 208–217

    Article  CAS  PubMed  Google Scholar 

  42. Das B, Ray D, De R. Influence of sodium carboxymethylcellulose on the aggregation behavior of aqueous 1-hexadecyl-3-methylimidazolium chloride solutions. Carbohydrate Polymers, 2014, 113: 208–216

    Article  CAS  PubMed  Google Scholar 

  43. Shao L L, An Q F, Ji Y L, Zhao Q, Wang X S, Zhu B K, Gao C J. Preparation and characterization of sulfated carboxymethyl cellulose nanofiltration membranes with improved water permeability. Desalination, 2014, 338: 74–83

    Article  CAS  Google Scholar 

  44. Liu Y, Yan W, Wang Z, Wang H, Zhao S, Wang J, Zhang P, Cao X. 1-Methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. Journal of Membrane Science, 2020, 599: 117830

    Article  CAS  Google Scholar 

  45. Zhang Y, Yu C, Lu Z, Yu S. Modification of polysulfone ultrafiltration membrane by sequential deposition of cross-linked poly(vinyl alcohol) (PVA) and sodium carboxymethyl cellulose (CMCNa) for nanofiltration. Desalination and Water Treatment, 2016, 57(38): 17658–17669

    Article  CAS  Google Scholar 

  46. Zhang Y, Guo M, Yan H, Pan G, Xu J, Shi Y, Liu Y. Novel organicnorganic hybrid composite membranes for nanofiltration of acid and alkaline media. RSC Advances, 2014, 4(101): 57522–57528

    Article  CAS  Google Scholar 

  47. Yin Q, Zhang Q, Cui Z, Li W, Xing W. Alkali resisting polyphenylsulfone ultrafiltration membrane with tailored microstructure. Polymer, 2017, 124: 128–138

    Article  CAS  Google Scholar 

  48. Gao Y, Li Z, Cheng B, Su K. Superhydrophilic poly(p-phenylene sulfide) membrane preparation with acid/alkali solution resistance and its usage in oil/water separation. Separation and Purification Technology, 2018, 192: 262–270

    Article  CAS  Google Scholar 

  49. Zhao P, Xue Y, Zhang R, Cao B, Li P. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. Journal of Membrane Science, 2020, 611: 118367

    Article  CAS  Google Scholar 

  50. Charfi A, Jang H, Kim J. Membrane fouling by sodium alginate in high salinity conditions to simulate biofouling during seawater desalination. Bioresource Technology, 2017, 240: 106–114

    Article  CAS  PubMed  Google Scholar 

  51. Naidu G, Jeong S, Kim S J, Kim I S, Vigneswaran S. Organic fouling behavior in direct contact membrane distillation. Desalination, 2014, 347: 230–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Grant No. 51773011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Xia or Pei Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, G., Xia, J., Cao, B. et al. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation. Front. Chem. Sci. Eng. 16, 709–719 (2022). https://doi.org/10.1007/s11705-021-2078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2078-2

Keywords

Navigation