Skip to main content

Hydroxyl radical-involved cancer therapy via Fenton reactions

Abstract

The tumor microenvironment features over-expressed hydrogen peroxide (H2O2). Thus, versatile therapeutic strategies based on H2O2 as a reaction substrate to generate hydroxyl radical (•OH) have been used as a prospective therapeutic method to boost anticancer efficiency. However, the limited Fenton catalysts and insufficient endogenous H2O2 content in tumor sites greatly hinder •OH production, failing to achieve the desired therapeutic effect. Therefore, supplying Fenton catalysts and elevating H2O2 levels into cancer cells are effective strategies to improve •OH generation. These therapeutic strategies are systematically discussed in this review. Furthermore, the challenges and future developments of hydroxyl radical-involved cancer therapy are discussed to improve therapeutic efficacy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Liou G Y, Storz P. Reactive oxygen species in cancer. Free Radical Research, 2010, 44(5): 479–496

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Fridovich I. Superoxide anion radical (O2•−), superoxide dismutases, and related matters. Journal of Biological Chemistry, 1997, 272(30): 18515–18517

    CAS  Article  Google Scholar 

  4. 4.

    Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10): 4557–4588

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Gligorovski S, Strekowski R, Barbati S, Vione D. Environmental implications of hydroxyl radicals (•OH). Chemical Reviews, 2015, 115(24): 13051–13092

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Yang B, Ding L, Yao H, Chen Y, Shi J. A metal-organic framework (MOF) Fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Advanced Materials, 2020, 32 (12): 1907152–1907164

    CAS  Article  Google Scholar 

  7. 7.

    Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chemical Reviews, 2014, 114(21): 10869–10939

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Begg A C, Stewart F A, Vens C. Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 2011, 11(4): 239–253

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Pan X, Bai L, Wang H, Wu Q, Wang H, Liu S, Xu B, Shi X, Liu H. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Advanced Materials, 2018, 30(23): 1800180–1800189

    Article  CAS  Google Scholar 

  10. 10.

    Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Kim J, Cho H C, Jeon H, Kim D, Song C, Lee N, Choi S H, Hyeon T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society, 2017, 139(32): 10992–10995

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Wang J, Zhang Y, Archibong E, Ligler F S, Gu Z. Leveraging H2O2 levels for biomedical applications. Advanced Biosystems, 2017, 1(9): 1700084–1700099

    Article  CAS  Google Scholar 

  13. 13.

    Devine P J, Perreault S D, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biology of Reproduction, 2012, 86(2): 27

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14.

    Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials Science & Engineering, 2020, 6(9): 4834–4845

    CAS  Article  Google Scholar 

  16. 16.

    Ranji-Burachaloo H, Gurr P A, Dunstan D E, Qiao G G. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano, 2018, 12(12): 11819–11837

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Gao Z, He T, Zhang P, Li X, Zhang Y, Lin J, Hao J, Huang P, Cui J. Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy. ACS Applied Materials & Interfaces, 2020, 12(18): 20271–20280

    CAS  Article  Google Scholar 

  18. 18.

    Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 30(3): 285–297

    Article  Google Scholar 

  19. 19.

    Dong S, Dong Y, Jia T, Zhang F, Wang Z, Feng L, Sun Q, Gai S, Yang P. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chemistry of Materials, 2020, 32(23): 9868–9881

    CAS  Article  Google Scholar 

  20. 20.

    Chen G, Yang Y, Xu Q, Ling M, Lin H, Ma M, Sun R, Xu Y, Liu X, Li N, et al. Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Letters, 2020, 20(11): 8141–8150

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton reaction-assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Applied Materials & Interfaces, 2019, 11(33): 29579–29592

    CAS  Article  Google Scholar 

  22. 22.

    Zhang Y, Lin L, Liu L, Liu F, Sheng S, Tian H, Chen X. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216: 119255–119264

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Wang D, Wu H, Wang C, Gu L, Chen H, Jana D, Feng L, Liu J, Wang X, Xu P, et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angewandte Chemie International Edition, 2021, 60(6): 3001–3007

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials Science & Engineering, 2020, 6(9): 4834–4845

    CAS  Article  Google Scholar 

  25. 25.

    Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, Ma P, Lin J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials, 2021, 268: 120545–120557

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Cao S, Fan J, Sun W, Li F, Li K, Tai X, Peng X. A novel Mn-Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 2019, 55(86): 12956–12959

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Wang C, Yang J, Dong C, Shi S. Glucose oxidase-related cancer therapies. Advanced Therapeutics, 2020, 3(10): 2000110–2000139

    CAS  Article  Google Scholar 

  28. 28.

    Lou-Franco J, Das B, Elliott C, Cao C. Gold nanozymes: from concept to biomedical applications. Nano-Micro Letters, 2021, 13(1): 10–46

    Article  CAS  Google Scholar 

  29. 29.

    Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366–1900376

    Article  CAS  Google Scholar 

  30. 30.

    Sullivan L B, Chandel N S. Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism, 2014, 2(1): 17–29

    Article  Google Scholar 

  31. 31.

    Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive nanotherapeutics by metal peroxide based nanomedicine. Advancement of Science, 2020, 8(1): 2000494–2000511

    Google Scholar 

  32. 32.

    Ka H, Park H J, Jung H J, Choi J W, Cho K S, Ha J, Lee K T. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Letters, 2003, 196(2): 143–152

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Ahn K J, Lee H S, Bai S K, Song C W. Enhancement of radiation effect using beta-lapachone and underlying mechanism. Radiation Oncology Journal, 2013, 31(2): 57–65

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Huang C, Liao Z, Lu H, Pan W, Wan W, Chen C, Sung H. Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation. Chemistry of Materials, 2016, 28(24): 9017–9025

    CAS  Article  Google Scholar 

  35. 35.

    Zhang Y, Wan Y, Liao Y, Hu Y, Jiang T, He T, Bi W, Lin J, Gong P, Tang L, et al. Janus γ-Fe2O3/SiO2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. Science Bulletin, 2020, 65(7): 564–572

    CAS  Article  Google Scholar 

  36. 36.

    Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtarc M L, Li Y. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomaterials Science, 2019, 7(9): 3683–3692

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Wang L, Huo M, Chen Y, Shi J. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163: 1–13

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    He T, Yuan Y, Jiang C, Blum N T, He J, Huang P, Lin J. Light-triggered transformable ferrous ion delivery system for photothermal primed chemodynamic therapy. Angewandte Chemie International Edition, 2021, 60(11): 6047–6054

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang X, Tao X, et al. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano, 2019, 13(9): 10002–10014

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Yao Z, Zhang B, Liang T, Ding J, Min Q, Zhu J. Promoting oxidative stress in cancer starvation therapy by site-specific startup of hyaluronic acid-enveloped dual-catalytic nanoreactors. ACS Applied Materials & Interfaces, 2019, 11(21): 18995–19005

    CAS  Article  Google Scholar 

  41. 41.

    Gao F, Wang F, Nie X, Zhang Z, Chen G, Xia L, Wang L, Wang C, Hao Z, Zhang W, et al. Mitochondria-targeted delivery and light controlled release of iron prodrug and CO to enhance cancer therapy by ferroptosis. New Journal of Chemistry, 2020, 44(8): 3478–3486

    CAS  Article  Google Scholar 

  42. 42.

    Nie X, Xia L, Wang H, Chen G, Wu B, Zeng T, Hong C, Wang L, You Y. Photothermal therapy nanomaterials boosting transformation of Fe(III) into Fe(II) in tumor cells for highly improving chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(35): 31735–31742

    CAS  Article  Google Scholar 

  43. 43.

    Fang C, Deng Z, Cao G, Chu Q, Wu Y, Li X, Peng X, Han G. Coferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Advanced Functional Materials, 2020, 30(16): 1910085–1910094

    CAS  Article  Google Scholar 

  44. 44.

    Deng Z, Fang C, Ma X, Li X, Zeng Y J, Peng X. One stone two birds: Zr-Fc metal-organic framework nanosheet for synergistic photothermal and chemodynamic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(18): 20321–20330

    CAS  Article  Google Scholar 

  45. 45.

    Na Y, Woo J, Choi W I, Sung D. Novel carboxylated ferrocene polymer nanocapsule with high reactive oxygen species sensitivity and on-demand drug release for effective cancer therapy. Colloids and Surfaces. B, Biointerfaces, 2021, 200: 111566–111572

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-reaction-based nanodrug for combined chemo/starvation/chemodynamic therapy against multidrug-resistant tumors. ACS Applied Materials & Interfaces, 2019, 11(49): 46112–46123

    CAS  Article  Google Scholar 

  47. 47.

    Zhang L, Wan S, Li C, Xu L, Cheng H, Zhang X. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe (III)/Fe(II) conversion. Nano Letters, 2018, 18(12): 7609–7618

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Dong Z, Feng L, Chao Y, Hao Y, Chen M, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Letters, 2019, 19(2): 805–815

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang S, Feng J, Zhang X. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano, 2018, 12(12): 12181–12192

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Shan L, Gao G, Wang W, Tang W, Wang Z, Yang Z, Fan W, Zhu G, Zhai K, Jacobson O, et al. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials, 2019, 210: 62–69

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Mu M, Wang Y, Zhao S, Li X, Fan R, Mei L, Wu M, Zou B, Zhao N, Han B, Guo G. Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent. ACS Applied Bio Materials, 2020, 3(7): 4128–4138

    CAS  Article  Google Scholar 

  52. 52.

    He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu W G, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics, 2020, 10(6): 2453–2462

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Fu L H, Hu Y R, Qi C, He T, Jiang S, Jiang C, He J, Qu J, Lin J, Huang P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced antitumor therapy. ACS Nano, 2019, 13(12): 13985–13994

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    He T, Jiang C, He J, Zhang Y, He G, Wu J, Lin J, Zhou X, Huang P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Advanced Materials, 2021, 33(13): 2008540–2008550

    CAS  Article  Google Scholar 

  55. 55.

    Qi C, He J, Fu L H, He T, Blum N T, Yao X, Lin J, Huang P. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics. ACS Nano, 2021, 15(1): 1627–1639

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Fu L H, Wan Y, Li C, Qi C, He T, Yang C, Zhang Y, Lin J, Huang P. Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Advanced Functional Materials, 2021, 31(14): 2009848–2009859

    CAS  Article  Google Scholar 

  57. 57.

    Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-like copper(II)-based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(15): 17254–17267

    CAS  Article  Google Scholar 

  59. 59.

    Hu R, Fang Y, Huo M, Ya H, Wang C, Chen Y, Wu R. Ultrasmall Cu2xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials, 2019, 206: 101–114

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Wang X, Zhong X, Lei H, Geng Y, Zhao Q, Gong F, Yang Z, Dong Z, Liu Z, Cheng L. Hollow Cu2Se nanozymes for tumor photothermal-catalytic therapy. Chemistry of Materials, 2019, 31(16): 6174–6186

    CAS  Article  Google Scholar 

  61. 61.

    Fu L H, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Advanced Materials, 2021, 33(7): 2006892–2006903

    CAS  Article  Google Scholar 

  62. 62.

    Yang C, Younis M R, Zhang J, Qu J, Lin J, Huang P. Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets. Small, 2020, 16(25): 2001518–2001528

    CAS  Article  Google Scholar 

  63. 63.

    Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8(1): 357–369

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    He T, Xu H, Zhang Y, Yi S, Cui R, Xing S, Wei C, Lin J, Huang P. Glucose oxidase-instructed traceable self-oxygenation/hyperthermia dually enhanced cancer starvation therapy. Theranostics, 2020, 10(4): 1544–1554

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Feng L, Xie R, Wang C, Gai S, He F, Yang D, Yang P, Lin J. Magnetic targeting, tumor microenvironment responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano, 2018, 12(11): 11000–11012

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, et al. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Advancement of Science, 2020, 7(17): 2001060–2001070

    CAS  Google Scholar 

  68. 68.

    Gao S, Lin H, Zhang H, Yao H, Chen Y, Shi J. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Advancement of Science, 2019, 6(3): 1801733–1801745

    Google Scholar 

  69. 69.

    Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Letters, 2017, 17(2): 928–937

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Sang Y, Cao F, Li W, Zhang L, You Y, Deng Q, Dong K, Ren J, Qu X. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. Journal of the American Chemical Society, 2020, 142(11): 5177–5183

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Wang Y, Yin W, Ke W, Chen W, He C, Ge Z. Multifunctional polymeric micelles with amplified Fenton reaction for tumor ablation. Biomacromolecules, 2018, 19(6): 1990–1998

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    An Y, Zhu J, Liu F, Deng J, Meng X, Liu G, Wu H, Fan A, Wang Z, Zhao Y. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Applied Materials & Interfaces, 2019, 11(33): 29655–29666

    CAS  Article  Google Scholar 

  73. 73.

    Han Y, Ouyang J, Li Y, Wang F, Jiang J H. Engineering H2O2 self-supplying nanotheranostic platform for targeted and imagingguided chemodynamic therapy. ACS Applied Materials & Interfaces, 2020, 12(1): 288–297

    CAS  Article  Google Scholar 

  74. 74.

    Gao S, Lu X, Zhu P, Lin H, Yu L, Yao H, Wei C, Chen Y, Shi J. Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2019, 7(22): 3599–3609

    CAS  Article  Google Scholar 

  75. 75.

    Lin L, Huang T, Song J, Ou X, Wang Z, Deng H, Tian R, Liu Y, Wang J, Liu Y, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(25): 9937–9945

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Zhang S, Cao C, Lv X, Dai H, Zhong Z, Liang C, Wang W, Huang W, Song X, Dong X A. H2O2 self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chemical Science (Cambridge), 2020, 11(7): 1926–1934

    CAS  Article  Google Scholar 

  77. 77.

    Xu X, Zeng Z, Chen J, Huang B, Guan Z, Huang Y, Huang Z, Zhao C. Tumor-targeted supramolecular catalytic nanoreactor for synergistic chemo/chemodynamic therapy via oxidative stress amplification and cascaded Fenton reaction. Chemical Engineering Journal, 2020, 390: 124628–124644

    CAS  Article  Google Scholar 

  78. 78.

    Kwon B, Han E, Yang W, Cho W, Yoo W, Hwang J, Kwon B M, Lee D. Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Applied Materials & Interfaces, 2016, 8(9): 5887–5897

    CAS  Article  Google Scholar 

  79. 79.

    Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen Z Y, Chen X. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Advancement of Science, 2019, 6(5): 1801986–1801993

    Google Scholar 

  80. 80.

    Wang S, Yu G, Wang Z, Jacobson O, Lin L S, Yang W, Deng H, He Z, Liu Y, Chen Z Y, et al. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angewandte Chemie International Edition, 2019, 58(41): 14758–14763

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Chen Q, Zhou J, Chen Z, Luo Q, Xu J, Song G. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(34): 30551–30565

    CAS  Article  Google Scholar 

  82. 82.

    Li X, Zhao C, Deng G, Liu W, Shao J, Zhou Z, Liu F, Yang H, Yang S. Nanozyme-augmented tumor catalytic therapy by self-supplied H2O2 generation. ACS Applied Bio Materials, 2020, 3(3): 1769–1778

    CAS  Article  Google Scholar 

  83. 83.

    Attia M F, Anton N, Wallyn J, Omran Z, Vandamme T F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology, 2019, 71(8): 1185–1198

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Din F U, Aman W, Ullah I, Qureshi O S, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 2017, 12: 7291–7309

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Khodabandehloo H, Zahednasab H, Hafez A A. Nanocarriers usage for drug delivery in cancer therapy. Iranian Journal of Cancer Prevention, 2016, 9(2): 3966–3973

    Google Scholar 

  86. 86.

    Sutrisno L, Hu Y, Hou Y, Cai K, Li M, Luo Z. Progress of iron-based nanozymes for antitumor therapy. Frontiers in Chemistry, 2020, 8: 680–689

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Hagen H, Marzenell P, Jentzsch E, Wenz F, Veldwijk M R, Mokhir A. Aminoferrocene-based prodrugs activated by reactive oxygen species. Journal of Medicinal Chemistry, 2012, 55(2): 924–934

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Hu M, Ju Y, Liang K, Suma T, Cui J, Caruso F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834

    CAS  Article  Google Scholar 

  89. 89.

    Yang W, Sousa A M M, Thomas-Gahring A, Fan X, Jin T, Li X, Tomasula P M, Liu L. Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complex. Materials (Basel), 2016, 9(9): 757–769

    PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Lu S C. Regulation of glutathione synthesis. Molecular Aspects of Medicine, 2009, 30(1–2): 42–59

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Wan S S, Cheng Q, Zeng X, Zhang X Z A. Mn(III)-sealed metal-organic-framework nanosystem for redox-unlocked tumor theranostics. ACS Nano, 2019, 13(6): 6561–6571

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Zhao H, Wang Y, Wang Y, Cao T, Zhao G. Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental, 2012, 125: 120–127

    CAS  Article  Google Scholar 

  93. 93.

    Masomboon N, Ratanatamskul C, Lu M C. Chemical oxidation of 2, 6-dimethylaniline in the Fenton process. Environmental Science & Technology, 2009, 43(22): 8629–8634

    CAS  Article  Google Scholar 

  94. 94.

    Brillas E, Banos M A, Camps S, Arias C, Cabot P L, Garrido J A, Rodriguez R M. Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New Journal of Chemistry, 2004, 28(2): 314–322

    CAS  Article  Google Scholar 

  95. 95.

    Li T, Zhou J, Wang L, Zhang H, Song C, Fuente J M, Pan Y, Song J, Zhang C, Cui D. Photo-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agent. Advanced Healthcare Materials, 2019, 8(15): 1900192–1900204

    Article  CAS  Google Scholar 

  96. 96.

    Zhang W, Lu J, Gao X, Li P, Zhang W, Ma Y, Wang H, Tang B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu(II) as the active center. Angewandte Chemie International Edition, 2018, 57(18): 4891–4896

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Fu L H, Qi C, Hu Y R, Lin J, Huang P. Glucose oxidase-instructed multimodal synergistic cancer therapy. Advanced Materials, 2019, 31(21): 1808325–1808339

    Article  CAS  Google Scholar 

  98. 98.

    Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y T, et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angewandte Chemie International Edition, 2011, 50(50): 12200–12204

    Article  Google Scholar 

  99. 99.

    Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for healthrelated applications. Chemical Science (Cambridge), 2020, 11(4): 923–936

    CAS  Article  Google Scholar 

  100. 100.

    Ighodaro O M, Akinloye O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 2018, 54(4): 287–293

    Article  Google Scholar 

  101. 101.

    Singh S. Nanomaterials exhibiting enzyme-like properties (nanozymes): current advances and future perspectives. Frontiers in Chemistry, 2019, 7: 46–56

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Kim Y S, Vallur P G, Phaëton R, Mythreye K, Hempel N. Insights into the dichotomous regulation of SOD2 in cancer. Antioxidants, 2017, 6(4): 86–111

    PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Wang X, Chen N, Liu X, Shi Y, Ling C, Zhang L. Ascorbate guided conversion of hydrogen peroxide to hydroxyl radical on goethite. Applied Catalysis B: Environmental, 2021, 282: 119558–119565

    CAS  Article  Google Scholar 

  104. 104.

    Gao S, Jin Y, Ge K, Li Z, Liu H, Dai X, Zhang Y, Chen S, Liang X, Zhang J. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Advancement of Science, 2019, 6(24): 1902137–1902146

    CAS  Google Scholar 

  105. 105.

    He C, Zhang X, Xiang G. Nanoparticle facilitated delivery of peroxides for effective cancer treatments. Biomaterials Science, 2020, 8(20): 5574–5582

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Golikova E P, Lakina N V, Grebennikova O V, Matveeva V G, Sulman E M. A study of biocatalysts based on glucose oxidase. Faraday Discussions, 2017, 202: 303–314

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Bankar S B, Bule M V, Singhal R S, Ananthanarayan L. Glucose oxidase—an overview. Biotechnology Advances, 2009, 27(4): 489–501

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J. Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers, 2017, 9(7): 255–276

    PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Karunwi O, Guiseppi-Elie A. Supramolecular glucose oxidase-SWNT conjugates formed by ultrasonication: effect of tube length, functionalization and processing time. Journal of Nanobiotechnology, 2013, 11(1): 6–22

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Zeng L, Huang K, Wan Y, Zhang J, Yao X, Jiang C, Lin J, Huang P. Programmable starving-photodynamic synergistic cancer therapy. Science China Materials, 2020, 63(4): 611–619

    CAS  Article  Google Scholar 

  111. 111.

    Zhang Y, Yang Y, Jiang S, Li F, Lin J, Wang T, Huang P. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Materials Horizons, 2019, 6(1): 169–175

    CAS  Article  Google Scholar 

  112. 112.

    Fu L H, Qi C, Lin J, Huang P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews, 2018, 47(17): 6454–6472

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, Yu G, Liu Y, Hu J, He Q, et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angewandte Chemie International Edition, 2017, 56(5): 1229–1233

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Comotti M, Pina C D, Matarrese R, Rossi M. The catalytic activity of “naked” gold particles. Angewandte Chemie International Edition, 2004, 43(43): 5812–5815

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Comotti M, Pina C D, Falletta E, Rossi M. Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Advanced Synthesis & Catalysis, 2006, 348(3): 313–316

    CAS  Article  Google Scholar 

  116. 116.

    Mu J, He L, Fan W, Tang W, Wang Z, Jiang C, Zhang D, Liu Y, Deng H, Zou J, et al. Cascade reactions catalyzed by planar metalorganic framework hybrid architecture for combined cancer therapy. Small, 2020, 16(42): 2004016–2004024

    CAS  Article  Google Scholar 

  117. 117.

    Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48(14): 3683–3704

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Malik A, Sultana M, Qazi A, Qazi M H, Parveen G, Waquar S, Ashraf A B, Rasool M. Role of natural radiosensitizers and cancer cell radioresistance: an update. Analytical Cellular Pathology, 2016, 2016: 2016–2021

    Article  CAS  Google Scholar 

  119. 119.

    Nedeljkovic Z S, Gokce N, Loscalzo J. Mechanisms of oxidative stress and vascular dysfunction. Postgraduate Medical Journal, 2003, 79(930): 195–200

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Pandey K B, Rizvi S I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medicine and Cellular Longevity, 2010, 3(1): 2–12

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Ohno S, Ohno Y, Suzuki N, Soma G I, Inoue M. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Research, 2009, 29(3): 809–815

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Chen Q, Espey M G, Sun A Y, Lee J H, Krishna M C, Shacter E, Choyke P L, Pooput C, Kirk K L, Buettner G R, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8749–8754

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Chen Q, Espey M G, Krishna M C, Mitchell J B, Corpe C P, Buettner G R, Shacter E, Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (38): 13604–13609

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Chen Q, Espey M G, Sun A Y, Pooput C, Kirk K L, Krishna M C, Khosh D B, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11105–11109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Science Translational Medicine, 2014, 6(222): 222ra18

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Yun J, Mullarky E, Lu C, Bosch K N, Kavalier A, Rivera K, Roper J, Chio I I C, Giannopoulou E G, Rago C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, 2015, 350(6266): 1391–1396

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Li X, Du Y, Wang H, Ma H, Wu D, Ren X, Wei Q, Xu J J. Self-supply of H2O2 and O2 by hydrolyzing CaO2 to enhance the electrochemiluminescence of luminol based on a closed bipolar electrode. Analytical Chemistry, 2020, 92(18): 12693–12699

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Huang C C, Chia W T, Chung M F, Lin K J, Hsiao C W, Jin C, Lim W H, Chen C C, Sung H W. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. Journal of the American Chemical Society, 2016, 138(16): 5222–5225

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Lin L S, Wang J F, Song J, Liu Y, Zhu G, Dai Y, Shen Z, Tian R, Song J, Wang Z, et al. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9(24): 7200–7209

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Yan Z, Bing W, Ding C, Dong K, Ren J, Qu X A. H2O2-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo. Nanoscale, 2018, 10(37): 17656–17662

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Kim B, Lee E, Kim Y, Park S, Khang G, Lee D. Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Advanced Functional Materials, 2013, 23(40): 5091–5097

    CAS  Article  Google Scholar 

  132. 132.

    Noh J, Kwon B, Han E, Park M, Yang W, Cho W, Yoo W, Khang G, Lee D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nature Communications, 2015, 20(6): 6907–6916

    Article  CAS  Google Scholar 

  133. 133.

    Cionti C, Taroni T, Sabatini V, Meroni D. Nanostructured oxide-based systems for the pH-triggered release of cinnamaldehyde. Materials (Basel), 2021, 14(6): 1536–1548

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Tianjin Science and Technology Committee (Grant No. 19JCYBJC28400), the Basic Research General Program of Shenzhen Science and Technology Innovation Commission in 2020 (Grant No. JCYJ20190806162412752).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zheng Wang or Dunyun Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xu, Y., Zhao, Y. et al. Hydroxyl radical-involved cancer therapy via Fenton reactions. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-021-2077-3

Download citation

Keywords

  • hydroxyl radical
  • Fenton catalyst
  • hydrogen peroxide
  • cancer therapy