Skip to main content

Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications

Abstract

Surface functionalization or modification to introduce more oxygen-containing functional groups to biochar is an effective strategy for tuning the physico-chemical properties and promoting follow-up applications. In this study, non-thermal plasma was applied for biochar surface carving before being used in contaminant removal and energy storage applications. The results showed that even a low dose of plasma exposure could introduce a high number density of oxygen-functional groups and enhance the hydrophilicity and metal affinity of the pristine biochar. The plasma-treated biochar enabled a faster metal-adsorption rate and a 40% higher maximum adsorption capacity of heavy metal ion Pb2+. Moreover, to add more functionality to biochar surface, biochar with and without plasma pre-treatment was activated by KOH at a temperature of 800 °C. Using the same amount of KOH, the plasma treatment resulted in an activated carbon product with the larger BET surface area and pore volume. The performance of the treated activated carbon as a supercapacitor electrode was also substantially improved by > 30%. This study may provide guidelines for enhancing the surface functionality and application performances of biochar using non-thermal-based techniques.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Liu W, Jiang H, Yu H. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews, 2015, 115(22): 12251–12285

    CAS  Article  Google Scholar 

  2. 2.

    Mohanty A K, Vivekanandhan S, Pin J M, Misra M. Composites from renewable and sustainable resources: challenges and innovations. Science, 2018, 362(6414): 536–542

    CAS  Article  Google Scholar 

  3. 3.

    Fu C, Li Z, Sun Z, Xie S. A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Frontiers of Chemical Science and Engineering, 2020, doi: https://doi.org/10.1007/s11705-020-1980-3

  4. 4.

    Zhou R, Zhou R, Wang S, Mihiri Ekanayake U G, Fang Z, Cullen P J, Bazaka K, Ostrikov K K. Power-to-chemicals: low-temperature plasma for lignin depolymerisation in ethanol. Bioresource Technology, 2020, 318: 123917

    CAS  Article  Google Scholar 

  5. 5.

    Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman A R, Ro K S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 2012, 200–202: 673–680

    Article  Google Scholar 

  6. 6.

    Yang G X, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 2014, 48: 396–405

    CAS  Article  Google Scholar 

  7. 7.

    Zhong Y, Zhang P, Zhu X, Li H, Deng Q, Wang J, Zeng Z, Zou J J, Deng S. Highly efficient alkylation using hydrophobic sulfonic acid-functionalized biochar as a catalyst for synthesis of high-density biofuels. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14973–14981

    CAS  Article  Google Scholar 

  8. 8.

    Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 2017, 246: 34–47

    CAS  Article  Google Scholar 

  9. 9.

    Gupta R K, Dubey M, Kharel P, Gu Z, Fan Q H. Biochar activated by oxygen plasma for supercapacitors. Journal of Power Sources, 2015, 274: 1300–1305

    CAS  Article  Google Scholar 

  10. 10.

    Zhou R, Zhou R, Zhang X, Bazaka K, Ostrikov K K. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(2): 340–349

    CAS  Article  Google Scholar 

  11. 11.

    Neyts E C. Special Issue on future directions in plasma nanoscience. Frontiers of Chemical Science and Engineering, 2019, 13(2): 199–200

    Article  Google Scholar 

  12. 12.

    Wang X, Zhou R, Zhang C, Xi S, Jones M W M, Tesfamichael T, Du A, Gui K, Ostrikov K K, Wang H. Plasma-induced on-surface sulfur vacancies in NiCo2S4 enhance the energy storage performance of supercapatteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(18): 9278–9291

    CAS  Article  Google Scholar 

  13. 13.

    Zhou R, Zhou R, Xian Y, Fang Z, Lu X, Bazaka K, Bogaerts A, Ostrikov K K. Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature. Chemical Engineering Journal, 2020, 382: 112745

    Google Scholar 

  14. 14.

    Xin Y, Sun B, Zhu X, Yan Z, Zhao X, Sun X. Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations. Applied Energy, 2017, 206: 126–133

    CAS  Article  Google Scholar 

  15. 15.

    Xin Y, Sun B, Zhu X, Yan Z, Zhao X, Sun X. Carbon nanoparticles production by pulsed discharge in liquid alcohols. Vacuum, 2018, 151: 90–95

    CAS  Article  Google Scholar 

  16. 16.

    Bogaerts A, Neyts E C. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027

    CAS  Article  Google Scholar 

  17. 17.

    Zhao T, Ullah N, Hui Y, Li Z. Review of plasma-assisted reactions and potential applications for modification of metal-organic frameworks. Frontiers of Chemical Science and Engineering, 2019, 13(3): 444–457

    CAS  Article  Google Scholar 

  18. 18.

    Zhou R, Zhou R, Alam D, Zhang T, Li W, Xia Y, Mai-Prochnow A, An H, Lovell E C, Masood H, Amal R, Ostrikov K K, Cullen P J. Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chemical Engineering Journal, 2021, 403: 126413

    CAS  Article  Google Scholar 

  19. 19.

    Ye L, Zhang J, Zhao J, Luo Z, Tu S, Yin Y. Properties of biochar obtained from pyrolysis of bamboo shoot shell. Journal of Analytical and Applied Pyrolysis, 2015, 114: 172–178

    CAS  Article  Google Scholar 

  20. 20.

    Kazak O, Eker Y R, Bingol H, Tor A. Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis. Chemical Engineering Journal, 2017, 325: 564–575

    CAS  Article  Google Scholar 

  21. 21.

    Siow K S, Kumar S, Griesser H J. Low-pressure plasma methods for generating non-reactive hydrophilic and hydrogel-like bio-interface coatings—a review. Plasma Processes and Polymers, 2015, 12(1): 8–24

    CAS  Article  Google Scholar 

  22. 22.

    Zhang B, Xu P, Qiu Y, Yu Q, Ma J, Wu H, Luo G, Xu M, Yao H. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chemical Engineering Journal, 2015, 263: 1–8

    CAS  Article  Google Scholar 

  23. 23.

    Peng B, Zhou R, Chen Y, Tu S, Yin Y, Ye L. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1006–1072

    CAS  Article  Google Scholar 

  24. 24.

    Ouni L, Ramazani A, Fardood S T. An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 2019, 13(2): 1–22

    Article  Google Scholar 

  25. 25.

    Wang F, Pan Y, Cai P, Guo T, Xiao H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresource Technology, 2017, 241: 482–490

    CAS  Article  Google Scholar 

  26. 26.

    Thubsuang U, Chotirut S, Thongnok A, Promraksa A, Nisoa M, Manmuanpom N, Wongkasemjit S, Chaisuwan T. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1072–1086

    CAS  Article  Google Scholar 

  27. 27.

    Zhou R, Zhou R, Zhang X, Fang Z, Wang X, Speight R, Wang H, Doherty W, Cullen P J, Ostrikov K K, Bazaka K. High-performance plasma-enabled biorefining of microalgae to value-added products. ChemSusChem, 2019, 12(22): 4976–4985

    CAS  Article  Google Scholar 

  28. 28.

    Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee J Y, Srinivasan M P. Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous and Mesoporous Materials, 2015, 218: 55–61

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52007023), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2020-BS-073, 2019-ZD-0160), the China Postdoctoral Science Foundation (Grant No. 2019M661107), the Dalian Maritime University basic scientific research business expenses key scientific research cultivation project (Grant No. 3132020371) and the Fundamental Research Funds for the Central Universities (Grant No. 3132021159). Rusen Zhou thanks the financial support from QUT Postgraduate Research Award and Faculty Write Up Scholarship. Kostya (Ken) Ostrikov thanks the Australian Research Council (ARC) and QUT Centre for Materials Science for partial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanbin Xin.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Wang, X., Zhou, R. et al. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-021-2070-x

Download citation

Keywords

  • non-thermal plasma
  • surface functionalization
  • biochar modification
  • wastewater treatment
  • supercapacitor