Skip to main content

Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties

Abstract

Copper(I) selenide-nanocrystalline semiconductor was synthesized via one-step mechanochemical synthesis after 5 min milling in a planetary ball mill. The kinetics of synthesis was followed by X-ray powder diffraction analysis and specific surface area measurements of milled 2Cu/Se mixtures. The X-ray diffraction confirmed the orthorhombic crystal structure of Cu2Se with the crystallite size ∼25 nm. The surface chemical structure was studied by X-ray photoelectron spectroscopy, whereby the binding energy of the Cu 2p and Se 3d signals corresponded to Cu+ and Se2− oxidation states. Transmission electron microscopy revealed agglomerated nanocrystals and confirmed their orthorhombic structure, as well. The optical properties were studied utilizing ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The direct bandgap energy 3.7 eV indicated a blue-shift phenomenon due to the quantum size effect. This type of Cu2Se synthesis can be easily adapted to production dimensions using an industrial vibratory mill. The advantages of mechanochemical synthesis represent the potential for inexpensive, environmentally-friendly, and waste-free manufacturing of Cu2Se.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Heydin R D, Murray R M. The crystal structures of Cu1.8Se, Cu3Se2, α- and γ-CuSe, CuSe2 and CuSe2II. Canadian Journal of Chemistry, 1976, 54(6): 841–848

    Article  Google Scholar 

  2. 2.

    Butt S, Farooq M, Mahmood W, Salam S, Sultan M, Basit M, Ma J, Lin Y, Nan C. One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. Journal of Alloys and Compounds, 2019, 786: 557–564

    CAS  Article  Google Scholar 

  3. 3.

    Gulay L, Daszkiewicz M, Strok O, Pietraszko A. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 2011, 4(3/4): 200–205

    Article  Google Scholar 

  4. 4.

    Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T. Discovery of colossal Seebeck effect in metallic Cu2Se. Nature Communications, 2019, 10(1): 72

    CAS  Article  Google Scholar 

  5. 5.

    Liu K, Liu H, Wang J, Shi L J. Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction. Journal of Alloys and Compounds, 2009, 484(1–2): 674–676

    CAS  Article  Google Scholar 

  6. 6.

    Han X, Liao F, Zhang Y, Yuan Z, Chen H, Xu C. CTAB-assisted hydrothermal synthesis of Cu2Se films composed of nanowire networks. Materials Letters, 2018, 210: 62–65

    CAS  Article  Google Scholar 

  7. 7.

    Hsiang H, Hsu W, Lu L, Chang Y, Yen F. Cuprous selenide nanocrystal synthesis and characterization. Materials Research Bulletin, 2013, 48(2): 715–720

    CAS  Article  Google Scholar 

  8. 8.

    Jia F, Zhang S, Zhang X, Peng X, Zhang H, Xiang Y. Sb-triggered β-to-α transition: solvothermal synthesis of metastable alpha-Cu2Se. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(48): 15941–15946

    CAS  Google Scholar 

  9. 9.

    Zhao Y, Zhu L, Jiang Y, Xie H, Zhang G, Ba N. Microphone shaped Cu2Se micro/nanoarchitecture: preparation, formation mechanism and optical property. Materials Letters, 2015, 147: 82–84

    CAS  Article  Google Scholar 

  10. 10.

    Eikeland E, Blichfeld A, Borup K, Zhao K, Overgaard J, Shi X, Chen L, Iversen B. Crystal structure across the beta to alpha phase transition in thermoelectric Cu2 xSe. Journal of Applied Crystallography, 2017, 4: 476–485

    CAS  Google Scholar 

  11. 11.

    Xu S, Wang H, Zhu J, Chen H. Sonochemical synthesis of copper selenides nanocrystals with different phases. Journal of Crystal Growth, 2002, 234(1): 263–266

    CAS  Article  Google Scholar 

  12. 12.

    Kaur H, Kaur J, Singh L, Singh S. Electrochemical synthesis and characterization of Cu2Se nanowires. Superlattices and Microstructures, 2013, 64: 294–302

    CAS  Article  Google Scholar 

  13. 13.

    Yang C, Hsiang H, Tu J. Copper selenide crystallites synthesized using the hot-injection process. Advanced Powder Technology, 2016, 27(3): 959–963

    Article  Google Scholar 

  14. 14.

    Yang C, Hsiang H. Rapid synthesis and characterization of nearly dispersed marcasite CuSe2 and berzelianite Cu2Se crystallites using the chemical reduction process. Materials Research Bulletin, 2018, 97: 30–36

    CAS  Article  Google Scholar 

  15. 15.

    Su Y, Li G, Guo Z, Li Y Y, Li Y X, Huang X J, Liu J H. Cation-exchange synthesis of Cu2Se nanobelts and thermal conversion to porous CuO nanobelts with highly selective sensing toward H2S. ACS Applied Nano Materials, 2018, 1(1): 245–253

    CAS  Article  Google Scholar 

  16. 16.

    Bulat L, Osvenskii V, Ivanov A, Sorokin A, Pshenay-Severin D, Bublik V, Tabachkova N, Panchenko V, Lavrentev M. Experimental and theoretical study of the thermoelectric properties of copper selenide. Semiconductors, 2017, 51(7): 854–857

    CAS  Article  Google Scholar 

  17. 17.

    Ivanov A, Sorokin A, Panchenko V, Tarasova I, Tabachkova N, Bublik V, Akchurin R. Structure of the Cu2Se compound produced by different methods. Semiconductors, 2017, 51(7): 866–869

    CAS  Article  Google Scholar 

  18. 18.

    Li J, Liu G, Wu X, He G, Yang Z, Li J. Reaction mechanism in mechanochemical synthesis of Cu2 xSe. Ceramics International, 2018, 44(18): 22172–22175

    CAS  Article  Google Scholar 

  19. 19.

    Stevels A, Jellinek F. Phase transitions in copper chalcogenides: 1. Copper-selenium system. Recueil Des Travaux Chimiques Des Pays-Bas, 1971, 90(3): 273–283

    CAS  Article  Google Scholar 

  20. 20.

    Lévy-Clément C, Neumann-Spallart M, Haram S, Santhanam K. Chemical bath deposition of cubic copper(I) selenide and its room temperature transformation to the orthorhombic phase. Thin Solid Films, 1997, 302(1–2): 12–16

    Article  Google Scholar 

  21. 21.

    Kopp O, Cavin O. Hydrothermal growth of single-crystal Cu2Se (Berzelianite). Journal of Crystal Growth, 1984, 67(2): 391–392

    CAS  Article  Google Scholar 

  22. 22.

    Haram S, Santhanam K, Neumann-Spallart M, Lévy-Clément C. Electroless deposition on copper substrates and characterization of thin-films of copper(I) selenide. Materials Research Bulletin, 1992, 27(10): 1185–1191

    CAS  Article  Google Scholar 

  23. 23.

    Baláž M, Zorkovská A, Urakaev F, Baláž P, Briančin J, Bujňáková Z, Achimovičová M, Gock E. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842

    Article  Google Scholar 

  24. 24.

    Achimovičová M, Daneu N, Rečnik A, Ďurišin J, Peter B, Fabián M, Kováč J, Šatka A. Characterization of mechanochemically synthesized lead selenide. Chemical Papers, 2009, 63(5): 562–567

    Article  Google Scholar 

  25. 25.

    Achimovičová M, Baláž P, Ohtani T, Kostova N, Tyuliev G, Feldhoff A, Šepelák V. Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill. Solid State Ionics, 2011, 192(1): 632–637

    Article  Google Scholar 

  26. 26.

    Achimovičová M, Gotor F, Real C, Daneu N. Mechanochemical synthesis and characterization of nanocrystalline BiSe, Bi2Se3 semiconductors. Journal of Materials Science Materials in Electronics, 2012, 23(10): 1844–1850

    Article  Google Scholar 

  27. 27.

    Achimovičová M, Daneu N, Tóthová E, Mazaj M, Dutková E. Combined mechanochemical/thermal annealing approach for the synthesis of Co9Se8 with potential optical properties. Applied Physics. A, Materials Science & Processing, 2019, 125(1): 8

    Article  Google Scholar 

  28. 28.

    Zhu L, Xie H, Liu Y, Chen D, Bian M, Zheng W. Novel ultralong hollow hyperbranched Cu2 xSe with nanosheets hierarchical structure: preparation, formation mechanism and properties. Journal of Alloys and Compounds, 2019, 802: 430–436

    CAS  Article  Google Scholar 

  29. 29.

    Riha S, Johnson D, Prieto A. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. Journal of the American Chemical Society, 2011, 133(5): 1383–1390

    CAS  Article  Google Scholar 

  30. 30.

    Baláž M, Dutková E, Bujňáková Z, Tóthová E, Kostova N, Karakirova Y, Briančin J, Kaňuchová M. Mechanochemistry of copper sulfides: characterization, surface oxidation and photocatalytic activity. Journal of Alloys and Compounds, 2018, 746: 576–582

    Article  Google Scholar 

  31. 31.

    Hegedüs M, Baláž M, Tešinský M, Sayagues M, Siffalovic P, Krul’aková M, Kaňuchová M, Briančin J, Fabián M, Baláž P. Scalable synthesis of potential solar cell absorber Cu2SnS3 (CTS) from nanoprecursors. Journal of Alloys and Compounds, 2018, 768: 1006–1015

    Article  Google Scholar 

  32. 32.

    Tufts B J, Abrahams I L, Caley C E, Lunt S R, Miskelly G M, Sailor M J, Santangelo P G, Lewis N S, Roe A L, Hodgson A O. XPS and EXAFS studies of the reactions of Co(III) ammine complexes with GAAS-surfaces. Journal of the American Chemical Society, 1990, 112(13): 5123–5136

    CAS  Article  Google Scholar 

  33. 33.

    Theye M L, Gheorghiu A, Senemaud C H, Kotkata M F, Kandil K. Studies of short-range order in amorphous GexSe100 x compounds by X-ray photoelectron spectroscopy. Philosophical Magazine B, Physics of Condensed Matter. Structural, Electronic, Optical and Magnetic Properties, 1994, 69: 209–222

    CAS  Google Scholar 

  34. 34.

    Zyoud A, Murtada K, Kwon H, Choi H, Kim T, Helal M, Faroun M, Bsharat H, Park D, Hilal H. Copper selenide film electrodes prepared by combined electrochemical/chemical bath depositions with high photo-electrochemical conversion efficiency and stability. Solid State Sciences, 2018, 75: 53–62

    CAS  Article  Google Scholar 

  35. 35.

    Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, Basic Research, 1966, 15(2): 627–637

    CAS  Article  Google Scholar 

  36. 36.

    Gurin V, Alexeenko A, Zolotovskaya S, Yumashev K. Copper and copper selenide nanoparticles in the sol-gel matrices: structural and optical. Materials Science and Engineering C, 2006, 26(5–7): 952–955

    CAS  Article  Google Scholar 

  37. 37.

    Sakr G B, Yahia I S, Fadel M, Fouad S S, Romčevic N. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. Journal of Alloys and Compounds, 2010, 507(2): 557–562

    CAS  Article  Google Scholar 

  38. 38.

    Petrovic M, Gilic M, Cirkovic J, Romčevic M, Romčevic N, Trajic J, Yahia I S. Optical properties of CuSe thin films—band gap determination. Science of Sintering, 2017, 49(2): 167–174

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was realized within the frame of the project “Research Centre of Advanced Materials and Technologies for Recent and Future Applications PROMATECH”, ITMS 26220220186, supported by the Operational Program “Research and Development” financed through European Regional Development Fund, Slovak Research and Development Agency under the contract No. APVV-18-0357, and by the Slovak Grant Agency VEGA (projects 02/0065/18, 02/0103/20). We would like to thank Professor J. Briančin for SEM observations, and the native speaker Mrs. Ch. Dejanakul-Wolfe for the formal text revision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcela Achimovičová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gáborová, K., Achimovičová, M., Hegedüs, M. et al. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-021-2066-6

Download citation

Keywords

  • Cu2Se
  • berzelianite
  • nanocrystalline semiconductor
  • mechanochemical synthesis
  • planetary ball mill