Skip to main content

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide with remarkable performance in the supercapacitor

Abstract

Production cost, capacitance, and electrode materials safety are the key factors to be concerned about for supercapacitors. In this work, a type of carbon nanosheets was produced through the carbonization of tripotassium citrate monohydrate and nitric acidification. Subsequently, a well-designed manganese dioxide/carbon nanosheets composite was synthesized through hydrothermal treating. The carbon nanosheets served as the substrate for growing the manganese dioxide, regulating its distribution, and preventing it from inhomogeneous dimensions and severe agglomeration. Many manganese dioxide nanosheets grew vertically on the numerous functional groups generated on the surface of the carbon nanosheets during acidification. The synergistic combination of carbon nanosheets and manganese dioxide tailors the electrochemical performance of the composite, which benefits from the excellent conductivity and stability of carbon nanosheets. The carbon nanosheets derived from tripotassium citrate monohydrate are conducive to the remarkable performance of manganese dioxide/carbon nanosheets electrode. Finally, an asymmetric supercapacitor with active carbon as the cathode and manganese dioxide/carbon nanosheets as the anode was assembled, achieving an outstanding energy density of 54.68 Wh·kg−1 and remarkable power density of 6399.2 W·kg−1 superior to conventional lead-acid batteries. After 10000 charge-discharge cycles, the device retained 75.3% of the initial capacitance, showing good cycle stability. Two assembled asymmetric supercapacitors in series charged for 3 min could power a yellow light emitting diode with an operating voltage of 2 V for 2 min. This study may provide valuable insights for applying carbon materials and manganese dioxide in the energy storage field.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Zhang L, Hu X S, Wang Z P, Sun F C, David G D. A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renewable & Sustainable Energy Reviews, 2018, 81: 1868–1878

    Article  Google Scholar 

  2. 2.

    Poonam K, Sharma K, Arora A, Tripathi S K. Review of supercapacitors: materials and devices. Journal of Energy Storage, 2019, 21: 801–825

    Article  Google Scholar 

  3. 3.

    Yang P, Mai W. Flexible solid-state electrochemical supercapacitors. Nano Energy, 2014, 8: 274–290

    CAS  Article  Google Scholar 

  4. 4.

    Gou Q Z, Zhao S, Wang J C, Li M, Xue J M. Recent advances on boosting the cell voltage of aqueous supercapacitors. Nano-Micro Letters, 2020, 12(1): 1–22

    Article  CAS  Google Scholar 

  5. 5.

    Béguin F, Presser V, Balducci A, Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, 26(14): 2219–2251

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Yan J, Qian W, Tong W, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014, 4(4): 1300816

    Article  CAS  Google Scholar 

  7. 7.

    Baumann D, Lee C, Wan C Z, Sun H T, Duan X F. Hierarchical porous carbon derived from covalent triazine frameworks for high mass loading supercapacitors. ACS Materials Letters, 2019, 1(3): 320–326

    CAS  Article  Google Scholar 

  8. 8.

    Wang Q S, Zhang Y F, Jiang H M, Meng C G. In-situ grown manganese silicate from biomass-derived heteroatom-doped porous carbon for supercapacitors with high performance. Journal of Colloid and Interface Science, 2019, 534: 142–155

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Wang Q S, Zhang Y F, Jiang H M, Li X J, Cheng Y, Meng C G. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor. Chemical Engineering Journal, 2019, 362: 818–829

    CAS  Article  Google Scholar 

  10. 10.

    Jiang H M, Zhang Y F, Wang C, Wang Q S, Meng C G, Wang J. Rice husk-derived Mn3O4/manganese silicate/C nanostructured composites for high-performance hybrid supercapacitors. Inorganic Chemistry Frontiers, 2019, 6(10): 2788–2800

    CAS  Article  Google Scholar 

  11. 11.

    Dong X Y, Zhang Y F, Chen Q, Jiang H M, Wang Q S, Meng C G, Kou Z K. Ammonia-etching-assisted nanotailoring of manganese silicate boost faradic capacity for high-performing hybrid super-capacitors. Sustainable Energy & Fuels, 2020, 4(5): 2220–2228

    CAS  Article  Google Scholar 

  12. 12.

    Zhang Y F, Wang C, Dong X Y, Jiang H M, Hu T, Meng C G, Huang C. Alkali etching metal silicates derived from bamboo leaves with enhanced electrochemical properties for solid-state hybrid supercapacitors. Chemical Engineering Journal, 2021, 417: 127964

    CAS  Article  Google Scholar 

  13. 13.

    Li Y, Huang D F, Shen W J. Preparation of supercapacitors based on nanocomposites films of MnO2/CB/C from sodium alginate and MnO2 nanoparticles by direct electrophoretic deposition and carbonization. Electrochimica Acta, 2015, 182: 104–112

    CAS  Article  Google Scholar 

  14. 14.

    Wang Y Q, Wang S S, Wu Y J, Zheng Z M, Hong K Q, Li B S, Sun Y M. Polyhedron-core/double-shell CuO@C@MnO2 decorated nickel foam for high performance all-solid-state supercapacitors. Electrochimica Acta, 2017, 246: 1065–1074

    CAS  Article  Google Scholar 

  15. 15.

    Gu Y J, Wen W, Wu J M. Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor. Journal of Power Sources, 2020, 469: 228425

    CAS  Article  Google Scholar 

  16. 16.

    Zhou H Y, Zhe Y, Yang X, Lv J, Kang L P, Liu Z H. RGO/MnO2/polypyrrole ternary film electrode for supercapacitor. Materials Chemistry and Physics, 2016, 177: 40–47

    CAS  Article  Google Scholar 

  17. 17.

    Wang H J, Peng C, Zheng J D, Peng F, Yu H. Design, synthesis and the electrochemical performance of MnO2/C@CNT as super-capacitor material. Materials Research Bulletin, 2013, 48(9): 389–3393

    Google Scholar 

  18. 18.

    Noh J C, Yoon C M, Kim Y K, Jang J. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon, 2017, 116: 470–178

    CAS  Article  Google Scholar 

  19. 19.

    Prasath A, Athika M, Duraisamy E, Sharm A S, Elumalai P. Carbon-quantum-dot-derived nanostructured MnO2 and its symmetrical supercapacitor performances. ChemistrySelect, 2018, 3(30): 8713–8723

    CAS  Article  Google Scholar 

  20. 20.

    Liu S L, Wan K N, Zhang C, Liu T X. Polyaniline-decorated 3D carbon porous network with excellent electrolyte wettability and high energy density for supercapacitors. Composites Communications, 2021, 24: 100610

    Article  Google Scholar 

  21. 21.

    Li L, Chen C, Xie J, Shao Z H, Yang F X. The preparation of carbon nanotube/MnO2 composite fiber and its application to flexible micro-supercapacitor. Journal of Nanomaterials, 2013, 32: 209–214

    Google Scholar 

  22. 22.

    Liew S Y, Walsh D A, Thielemans W. High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Advances, 2013, 3(24): 9158–9162

    CAS  Article  Google Scholar 

  23. 23.

    Fan H S, Zhao N, Wang H, Xu J, Pan F. 3D conductive network-based free-standing PANI-RGO-MWNTs hybrid film for high-performance flexible supercapacitor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(31): 12340–12347

    CAS  Article  Google Scholar 

  24. 24.

    Wang H L, Xu Z W, Li Z, Cui K, Ding J, Kohandehghan A, Tan X H, Zahiri B, Olsen B C, Holt C M B, David M. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Letters, 2014, 14(4): 1987–1994

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Zhao K M, Xu Z Q, He Z, Ye G Y, Gan Q M, Zhou Z, Liu S Q. Vertically aligned MnO2 nanosheets coupled with carbon nanosheets derived from Mn-MOF nanosheets for supercapacitor electrodes. Journal of Materials Science, 2018, 53(18): 13111–13125

    CAS  Article  Google Scholar 

  26. 26.

    Lang J W, Kong L B, Liu M, Luo Y C, Kang L. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. Journal of Solid State Electrochemistry, 2010, 14(8): 1533–1539

    CAS  Article  Google Scholar 

  27. 27.

    Yan J, Fan Z J, Wei T, Qian W Z, Zhang M L, Wei F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48(13): 3825–3833

    CAS  Article  Google Scholar 

  28. 28.

    Dong X C, Wang X W, Wang J, Song H, Li X G, Wang L H, Park M B C, Li C M, Chen P. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon, 2012, 50(13): 4865–4870

    CAS  Article  Google Scholar 

  29. 29.

    Li Z P, Mi Y J, Liu X H, Liu S, Yang S R, Wang J Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21(38): 14706–14711

    CAS  Article  Google Scholar 

  30. 30.

    Lei Z B, Shi F H, Lu L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Applied Materials & Interfaces, 2012, 4(2): 1058–1064

    CAS  Article  Google Scholar 

  31. 31.

    Mao L, Zhang K, Chan H S O, Wu J S. Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. Journal of Materials Chemistry, 2012, 22(5): 1845–1851

    CAS  Article  Google Scholar 

  32. 32.

    Yu L, Zhang G Q, Yuan C Z, Lou X W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Zhang J W, Dong L B, Xu C J, Hao J W, Kang F Y, Li J. Comprehensive approaches to three-dimensional flexible super-capacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. Journal of Materials Science, 2017, 52(10): 5788–5798

    CAS  Article  Google Scholar 

  34. 34.

    Li Y, Chen C. Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. Journal of Materials Science, 2017, 52(20): 12348–12357

    CAS  Article  Google Scholar 

  35. 35.

    Yue S F, Ma L, Xu B, Chu L. Activated carbon fiber felt used directly as electrode for supercapacitor. Dianchi, 2011, 41(02): 62–65

    CAS  Google Scholar 

  36. 36.

    Jiang H, Yan X H, Miao J Y, You M Y, Zhu Y H, Pan J M, Wang L, Cheng X N. Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors. Journal of Materiomics, 2021, 7(1): 156–165

    Article  Google Scholar 

  37. 37.

    Mathis T S, Kurra N, Wang X H, Pinto D, Simon P, Gogotsi Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Advanced Energy Materials, 2019, 9(39): 1902007

    CAS  Article  Google Scholar 

  38. 38.

    Jiang H, Zhou C, Yan X H, Miao J Y, You M Y, Zhu Y H, Li Y L, Zhou W D, Cheng X N. Effects of various electrolytes on the electrochemistry performance of Mn3O4/carbon cloth to ultraflexible all-solid-state asymmetric supercapacitor. Journal of Energy Storage, 2020, 32: 101898

    Article  Google Scholar 

  39. 39.

    Gao L J, Peng A P, Wang Z Y, Zhang H, Shi Z J, Gu Z N, Cao G P, Ding B Z. Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Communications, 2008, 146(9–10): 380–383

    CAS  Article  Google Scholar 

  40. 40.

    Wu Y J, Gao G H, Wu G M. Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(5): 1828–1832

    CAS  Article  Google Scholar 

  41. 41.

    Vellacheri R, Zhao H P, Mühlstädt M, Ming J, Al-Haddad A, Wu M H, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1(1): 1600012

    Article  CAS  Google Scholar 

  42. 42.

    Li L, Hu Z A, An N, Yang Y Y, Li Z M, Wu H Y. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. Journal of Physical Chemistry C, 2014, 118(40): 22865–22872

    CAS  Article  Google Scholar 

  43. 43.

    Li D Y, Lin J, Lu Y, Huang Y, He X, Yu C, Zhang J, Tang C C. MnO2 nanosheets grown on N-doped agaric-derived three-dimensional porous carbon for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 815: 152344

    Article  CAS  Google Scholar 

  44. 44.

    Raza F, Ni X P, Wang J Q, Liu S F, Jiang Z, Liu C L, Chen H F, Farooq A, Ju A Q. Ultrathin honeycomb-like MnO2 on hollow carbon nanofiber networks as binder-free electrode for flexible symmetric all-solid-state supercapacitors. Journal of Energy Storage, 2020, 30: 101467

    Article  Google Scholar 

  45. 45.

    Dirican M, Yanilmaz M, Asiri A M, Zhang X W. Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitor. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2020, 861: 113995

    CAS  Google Scholar 

  46. 46.

    Lv H P, Yuan Y, Xu Q J, Liu H M, Wang Y G, Xia Y Y. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. Journal of Power Sources, 2018, 398: 167–174

    CAS  Article  Google Scholar 

  47. 47.

    Wang Y H, Zhang D Y, Lu Y, Wang W X, Peng T, Zhang Y G, Guo Y, Wang Y G, Huo K F, Kim J K, Luo Y S. Cable-like doublecarbon layers for fast ion and electron transport: an example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors. Carbon, 2018, 143: 335–342

    Article  CAS  Google Scholar 

  48. 48.

    Das H T, Saravanya S, Elumalai P. Disposed dry cells as sustainable source for generation of few layers of graphene and manganese oxide for solid-state symmetric and asymmetric supercapacitor applications. ChemistrySelect, 2018, 3(46): 13275–13283

    CAS  Article  Google Scholar 

  49. 49.

    Bai M H, Liu R, Yang X B, Yu Z, Wang Y, Zhao Z. Polypyrrole and manganese oxide composite materials with high working voltage and excellent cycling stability. ChemistrySelect, 2018, 3(38): 10574–10579

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Six Talents Peak Project in Jiangsu Province (Grant No. 2011-ZBZZ045), Key R&D Program of Zhenjiang (Grant No. GY2018016), and Innovative Training Program in Jiangsu University (Grant No. Y18A017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuehua Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yuan, X., Yan, X. et al. Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide with remarkable performance in the supercapacitor. Front. Chem. Sci. Eng. (2021). https://doi.org/10.1007/s11705-021-2065-7

Download citation

Keywords

  • carbon nanosheets
  • manganese dioxide
  • asymmetric supercapacitors
  • energy density
  • power density