Skip to main content
Log in

In-situ hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA damage

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Mitochondrial DNA has a special structure that is prone to damage resulting in many serious diseases, such as genetic diseases and cancers. Therefore, the rapid and specific monitoring of mitochondrial DNA damage is urgently needed for biological recognition. Herein, we constructed an in situ hydrophobic environment-triggering reactive fluorescence probe named MBI-CN. The fluorophore was 2-styrene-1H-benzo[d]imidazole, and malononitrile was introduced as a core into a molecule to initiate the hydrolysis reaction in the specific environment containing damaged mitochondrial DNA. In this design, MBI-CN conjugates to mitochondrial DNA without causing additional damages. Thus, MBI-CN can be hydrolyzed to generate MBI-CHO in an in situ hydrophobic environment with mitochondrial DNA damage. Meanwhile, MBI-CHO immediately emitted a significative fluorescence signal changes at 437 and 553 nm within 25 s for the damaged mitochondria DNA. Give that the specific and rapid response of MBI-CN does not cause additional damages to mitochondrial DNA, it is a potentially effective detection tool for the real-time monitoring of mitochondrial DNA damage during cell apoptosis and initial assessment of cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuchlyan J, Martinez-Fernandez L, Mori M, Gavvala K, Ciaco S, Boudier C, Richert C, Didier P, Tor Y, Improta R, Mély Y. What makes thienoguanosine an outstanding fluorescent DNA probe. Journal of the American Chemical Society, 2020, 142(40): 16999–17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao F L, Li L J, Fan J L, Cao J F, Li Y Q, Chen L Y, Peng X J. An off-on two-photon carbazole-based fluorescent probe: highly targeting and super-resolution imaging of mtDNA. Analytical Chemistry, 2019, 91(5): 3336–3341

    Article  CAS  PubMed  Google Scholar 

  3. Yakes F M, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (2): 514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vladimir B S, Evgeny E, Natalia A, Maria A A, Sergey I N, Georgii A B, Igor A, Shamil R S. Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nature Genetics, 2019, 51(1): 36–41

    Article  Google Scholar 

  5. Anderson S, Bankier A T, Barrell B G, De Bruijn M H, Coulson A R, Drouin J, Eperon I C, Nierlich D P, Roe B A, Sanger F, Schreier P H, Smith A J H, Staden R, Young I G. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806): 457–465

    Article  CAS  PubMed  Google Scholar 

  6. Bibb M J, Van Etten R A, Wright C T, Walberg M W, Clayton D A. Sequence and gene organization of mouse mitochondrial DNA. Cell, 1981, 26(2): 167–180

    Article  CAS  PubMed  Google Scholar 

  7. Assaf C B, Maayan R, Yifat S O, Michael M I, Dan S, Malka C, Aaron B, Gideon Z, Donna S S, Batsheva K. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell, 2011, 145(3): 435–446

    Article  Google Scholar 

  8. Makoto R H, Jeffrey J K, Erin J W, Sudarshan R, Ryan T S, Wayne G, Aaron J T, Barbara W, Christopher M L, Kunhong X, et al. A stress response pathway regulates DNA damage through β,2-adrenoreceptors and β-arrestin-1. Nature, 2011, 477(7364): 349–353

    Article  Google Scholar 

  9. Furda A M, Marrangoni A M, Lokshin A, Van Houten B. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair, 2012, 11(8): 684–692

    Article  CAS  PubMed  Google Scholar 

  10. Feng B D, Wang K, Liu J W, Mao G J, Cui J Q, Xuan X P, Jiang K, Zhang H. Ultrasensitive apurinic/apyrimidinic site-specific ratio fluorescent rotor for real-time highly selective evaluation of mtDNA oxidative damage in living cells. Analytical Chemistry, 2019, 91 (21): 13962–13969

    Article  CAS  PubMed  Google Scholar 

  11. Neiman M, Taylor D R. The causes of mutation accumulation in mitochondrial genomes. Proceedings. Biological Sciences, 2009, 276(1660): 1201–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Furda A M, Marrangoni A M, Lokshin A, Van Houten B. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair, 2012, 11(8): 684–692

    Article  CAS  PubMed  Google Scholar 

  13. Schon E A, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Reviews. Genetics, 2012, 13(12): 878–890

    CAS  PubMed  Google Scholar 

  14. Schuermann D, Scheidegger S P, Weber A R, Bjoras M, Leumann C J, Schar P. 3CAPS—a structural AP-site analogue as a tool to investigate DNA base excision repair. Nucleic Acids Research, 2016, 44(5): 2187–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bender A, Krishnan K J, Morris C M, Taylor G A, Reeve A K, Perry R H, Jaros E, Hersheson J S, Betts J, Klopstock T, Taylor R W, Turnbull D M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and parkinson disease. Nature Genetics, 2006, 38(5): 515–517

    Article  CAS  PubMed  Google Scholar 

  16. Rebbeck C A, Leroi A M, Burt A. Mitochondrial capture by a transmissible cancer. Science, 2011, 331(6015): 303

    Article  CAS  PubMed  Google Scholar 

  17. Ascaso F J, Lopez-Gallardo E, DelPrado E, Ruiz-Pesini E, Montoya J. Macular lesion resembling adult-onset vitelliform macular dystrophy in Kearns-Sayre syndrome with multiple mtDNA deletions. Clinical & Experimental Ophthalmology, 2010, 38(8): 812–816

    Article  Google Scholar 

  18. Badura-Stronka M, Wawrocka A, Zawieja K, Silska S, Krawczynski M R. Severe manifestation of Leber’s hereditary optic neuropathy due to 11778G > A mtDNA mutation in a female with hypoestrogenism due to perrault syndrome. Mitochondrion, 2013, 13(6): 831–834

    Article  CAS  PubMed  Google Scholar 

  19. Sun W, Li M, Fan J L, Peng X J. Activity-based sensing and theranostic probes based on photoinduced electron transfer. Accounts of Chemical Research, 2019, 52(10): 2818–2831

    Article  CAS  PubMed  Google Scholar 

  20. Sun W, Guo S G, Hu C, Fan J L, Peng X J. Recent development of chemosensors based on cyanine platforms. Chemical Reviews, 2016, 116(14): 7768–7817

    Article  CAS  PubMed  Google Scholar 

  21. Lin F, Zhou Y F, Li Q S, Zhou X S, Shao Y, Haber-meyer B, Wang H, Shi X H, Xu Z A. Prototropically allosteric probe for superbly selective DNA analysis. Analytical Chemistry, 2017, 89(17): 9299–9306

    Article  CAS  PubMed  Google Scholar 

  22. Zou X X, Shi Y L, Zhu R, Han J H, Han S F. Organelle-redirected chameleon sensor-enabled live cell imaging of mitochondrial DNA. Analytical Chemistry, 2019, 91(24): 15899–15907

    Article  CAS  PubMed  Google Scholar 

  23. Abeywickrama C S, Bertman K A, Plescia C B, Stahelin R V, Pang Y. Structural effect on the cellular selectivity of an NIR-emitting cyanine probe: from lysosome to simultaneous nucleus and mitochondria selectivity with potential for monitoring mitochondria dysfunction in cells. ACS Applied Bio Materials, 2019, 2(11): 5174–5181

    Article  CAS  Google Scholar 

  24. Briggs C, Jones M. SYBR Green I-induced fluorescence in cultured immune cells: a comparison with acridine orange. Acta Histochemica, 2005, 107(4): 301–312

    Article  PubMed  Google Scholar 

  25. Davis S K, Bardeen C J. Cross-linking of histone proteins to DNA by UV illumination of chromatin stained with hoechst 33342. Photochemistry and Photobiology, 2003, 77(6): 675–679

    Article  CAS  PubMed  Google Scholar 

  26. Pfeifer G P, You Y H, Besaratinia A. Mutations induced by ultraviolet light. Mutation Research, 2005, 571(1–2): 19–31

    Article  CAS  PubMed  Google Scholar 

  27. Smith P J, Blunt N, Wiltshire M, Hoy T, Teesdale-Spittle P, Craven M R, Watson J V, Amos W B, Errington R J, Patterson L H. Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry, 2000, 40(4): 280–291

    Article  CAS  PubMed  Google Scholar 

  28. Burke C S, Byrne A, Keyes T E. Highly selective mitochondrial targeting by a ruthenium(II) peptide conjugate: imaging and photoinduced damage of mitochondrial DNA. Angewandte Chemie International Edition, 2018, 57(38): 12420–12424

    Article  CAS  PubMed  Google Scholar 

  29. Cao J J, Zheng Y, Wu X W, Tan C P, Chen M H, Wu N, Ji L N, Mao Z W. Anticancer cyclometalated iridium(III) complexes with planar ligands: mitochondrial DNA damage and metabolism disturbance. Journal of Medicinal Chemistry, 2019, 62(7): 3311–3322

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Y, Zhang D Y, Zhang H, Cao J J, Tan C P, Ji L N, Mao Z W. Photodamaging of mitochondrial DNA to overcome cisplatin resistance by a Ru II-Pt II bimetallic complex. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(71): 18971–18980

    CAS  Google Scholar 

  31. Feng B D, Wang K, Yang Y G, Wang G, Zhang H, Liu Y F, Jiang K. Ultrasensitive recognition of AP sites in DNA at the single-cell level: one molecular rotor sequentially self-regulated to form multiple different stable conformations. Chemical Science (Cambridge), 2019, 10(44): 10373–10380

    Article  CAS  Google Scholar 

  32. Peng X J, Wu T, Fan J L, Wang J Y, Zhang S, Song F L, Sun S G. An effective minor groove binder as a red fluorescent marker for live-cell DNA imaging and quantification. Angewandte Chemie International Edition, 2011, 50(18): 4180–4183

    Article  CAS  PubMed  Google Scholar 

  33. Friedberg E C. DNA damage and repair. Nature, 2003, 421(6921): 436–440

    Article  PubMed  Google Scholar 

  34. Song Y L, Tian T, Shi Y Z, Liu W L, Zou Y, Khajvand T, Wang S L, Zhu Z, Yang C Y. Enrichment and single-cell analysis of circulating tumor cells. Chemical Science (Cambridge), 2017, 8(3): 1736–1751

    Article  CAS  Google Scholar 

  35. Leung C H, Zhong H J, He H Z, Lu L, Chan D S H, Ma D L. Luminescent oligonucleotide-based detection of enzymes involved with DNA repair. Chemical Science (Cambridge), 2013, 4(10): 3781–3795

    Article  CAS  Google Scholar 

  36. Liu C X, Wang Y F, Zhang X, Wu F, Yang W, Zou G G, Yao Q, Wang J Q, Chen Y Q, Wang S R, Zhou X. Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chemical Science (Cambridge), 2017, 8(6): 4505–4510

    Article  CAS  Google Scholar 

  37. Visvardis E E, Tassiou A M, Piperakis S M. Study of DNA damage induction and repair capacity of fresh and cryopreserved lymphocytes exposed to H2O2 and γ-irradiation with the alkaline comet assay. Mutation Research, 1997, 383(1): 71–80

    Article  CAS  PubMed  Google Scholar 

  38. Berova N, Nakanishi K, Woody R W. Circular Dichroism: Principles and Applications. New York: Wiley-VCH, 2000, 703–718

    Google Scholar 

  39. Monnot M, Mauffret O, Lescot E, Fermandjian S. Probing intercalation and conformational effects of the anticancer drug 2-methyl-9-hydroxyellipticinium acetate in DNA fragments with circular dichroism. European Journal of Biochemistry, 1992, 204 (3): 1035–1039

    Article  CAS  PubMed  Google Scholar 

  40. Karami K, Shirani-Sarmazeh Z, Hosseini-Kharat M, Lipkowski J, Saeidifar M. Synthesis, spectral characterization, crystal structure and in vitro DNA/protein binding studies of phosphorous ylide palladacyclic complexes containing azide group. Journal of Photochemistry and Photobiology. B, Biology, 2015, 144: 11–19

    Article  CAS  PubMed  Google Scholar 

  41. Baase W A, Johnson W C Jr. Circular dichroism and DNA secondary structure. Nucleic Acids Research, 1979, 6(2): 797–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarkar D, Das P, Basak S, Chattopadhyay N. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study. Journal of Physical Chemistry B, 2008, 112(30): 9243–9249

    Article  CAS  Google Scholar 

  43. Poulsen B C, Estalayo-Adrián S, Blasco S, Bright S A, Kelly J M, Williams D C, Gunnlaugsson T. Luminescent ruthenium polypyridyl complexes with extended ‘dppz’ like ligands as DNA targeting binders and cellular agents. Dalton Transactions (Cambridge, England), 2016, 45(45): 18208–18220

    Article  CAS  Google Scholar 

  44. Fishel M L, Seo Y R, Smith M L, Kelley M R. Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glyeosylase in mitochondria leads to enhanced cell killing. Cancer Research, 2003, 63(3): 608–615

    CAS  PubMed  Google Scholar 

  45. Scaduto R C Jr, Grotyohann L W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophysical Journal, 1999, 76(1): 469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21722501 and 22004028), Henan Special Support for High-level Talents Central Plains Science and Technology Innovation Leading Talents (Grant No. 204200510006), Key Project of Science and Technology of Henan Province (Grant No. 202102310139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Niu, H., Zhai, H. et al. In-situ hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA damage. Front. Chem. Sci. Eng. 16, 92–102 (2022). https://doi.org/10.1007/s11705-021-2063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2063-9

Keywords

Navigation