Abstract
Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value, high viscosity, high corrosiveness and storage instability. Solvent addition is a simple method for circumventing these disadvantages to allow further processing and storage. In this work, computer-aided molecular design tools were developed to design optimal solvents to upgrade bio-oil whilst having low environmental impact. Firstly, target solvent requirements were translated into measurable physical properties. As different property prediction models consist different levels of structural information, molecular signature descriptor was used as a common platform to formulate the design problem. Because of the differences in the required structural information of different property prediction models, signatures of different heights were needed in formulating the design problem. Due to the combinatorial nature of higher-order signatures, the complexity of a computer-aided molecular design problem increases with the height of signatures. Thus, a multi-stage framework was developed by developing consistency rules that restrict the number of higher-order signatures. Finally, phase stability analysis was conducted to evaluate the stability of the solvent-oil blend. As a result, optimal solvents that improve the solvent-oil blend properties while displaying low environmental impact were identified.

This is a preview of subscription content, access via your institution.
References
Lee S Y, Sankaran R, Chew K W, Tan C H, Krishnamoorthy R, Chu D T, Show P L. Waste to bioenergy: a review on the recent conversion technologies. BMC Energy, 2019, 1(4): 1–22
Lewandowski W M, Ryms M, Kosakowski W. Thermal biomass conversion: a review. Processes, 2020, 8(5): 516
Fermoso J, Pizarro P, Coronado J M, Serrano D P. Advanced biofuels production by upgrading of pyrolysis bio-oil. Wiley Interdisciplinary Reviews. Energy and Environment, 2017, 6(4): 1–18
Khosravanipour Mostafazadeh A, Solomatnikova O, Drogui P, Tyagi R D. A review of recent research and developments in fast pyrolysis and bio-oil upgrading. Biomass Conversion and Biorefinery, 2018, 8(3): 739–773
Yang H, Yao J, Chen G, Ma W, Yan B, Qi Y. Overview of upgrading of pyrolysis oil of biomass. Energy Procedia, 2014, 61: 1306–1309
Zhang S, Yang X, Zhang H, Chu C, Zheng K, Ju M, Liu L. Liquefaction of biomass and upgrading of bio-oil: a review. Molecules, 2019, 24(2250): 1–30
Lian X, Xue Y, Zhao Z, Xu G, Han S, Yu H. Progress on upgrading methods of bio-oil: a review. International Journal of Energy Research, 2017, 41(13): 1798–1816
Venkatasubramanian V, Chan K, Caruthers J M. Computer-aided molecular design using genetic algorithms. Computers & Chemical Engineering, 1994, 18(9): 833–844
Gani R, Achenie L E K, Venkatasubramanian V. Chapter 1—Introduction to CAMD. Computer-Aided Chemical Engineering, 2003, 12: 3–21
Papadopoulos A I, Tsivintzelis I, Linke P, Seferlis P. Computer-aided molecular design: fundamentals, methods, and applications. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018, 4–36
Austin N D, Sahinidis N V, Trahan D W. Computer-aided molecular design: an introduction and review of tools, applications, and solution techniques. Chemical Engineering Research & Design, 2016, 116: 2–26
Ng L Y, Chong F K, Chemmangattuvalappil N G. Challenges and opportunities in computer-aided molecular design. Computers & Chemical Engineering, 2015, 81: 115–129
Zhou T, McBride K, Linke S, Song Z, Sundmacher K. Computer-aided solvent selection and design for efficient chemical processes. Current Opinion in Chemical Engineering, 2020, 27: 35–44
Chemmangattuvalappil N G. Development of solvent design methodologies using computer-aided molecular design tools. Current Opinion in Chemical Engineering, 2020, 27: 51–59
Hada S, Solvason C C, Eden M R. Characterization-based molecular design of bio-fuel additives using chemometric and property clustering techniques. Frontiers in Energy Research, 2014, 2(20): 1–12
Khor S Y, Liam K Y, Loh W X, Tan C Y, Ng L Y, Hassim M H, Ng D K W, Chemmangattuvalappil N G. Computer aided molecular design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 2017, 106: 211–223
Yunus N A, Zaki N M, Wan Alwi S R. Design of solvents for palm oil recovery using computer aided approach. Chemical Engineering Transactions, 2018, 63: 583–588
Mah A X Y, Chin H H, Neoh J Q, Aboagwa O A, Thangalazhy-Gopakumar S, Chemmangattuvalappil N G. Design of bio-oil additives via computer-aided molecular design tools and phase stability analysis on final blends. Computers & Chemical Engineering, 2019, 123: 257–271
Byrne F P, Jin S, Paggiola G, Petchey T H M, Clark J H, Farmer T J, Hunt A J, McElroy C R, Sherwood J. Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 2016, 4(7): 1–24
Neoh J Q, Chin H H, Mah A X Y, Aboagwa O A, Thangalazhy-Gopakumar S, Chemmangattuvalappil N G. Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 2019, 19: 53–63
Dimian A C, Bildea C S, Kiss A A. Chapter 12—Chemical Product Design. Computer-Aided Chemical Engineering, 2014, 35: 489–523
Chemmangattuvalappil N G, Eden M R. A novel methodology for property-based molecular design using multiple topological indices. Industrial & Engineering Chemistry Research, 2013, 52(22): 7090–7103
Visco D P Jr, Pophale R S, Rintoul M D, Faulon J L. Developing a methodology for an inverse quantitative structure-activity relationship using the signature molecular descriptor. Journal of Molecular Graphics & Modelling, 2002, 20(6): 429–438
Faulon J L, Visco D P, Pophale R S. The signature molecular descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 707–720
Visco D P Jr, Chen J J. The signature molecular descriptor in molecular design: past and current applications. Computer-Aided Chemical Engineering, 2016, 39: 315–343
Brown W M, Martin S, Rintoul M D, Faulon J L. Designing novel polymers with targeted properties using the signature molecular descriptor. Journal of Chemical Information and Modeling, 2006, 46(2): 826–835
Jackson J D, Weis D C, Visco D P Jr. Potential glucocorticoid receptor ligands with pulmonary selectivity using I-QSAR with the signature molecular descriptor. Chemical Biology & Drug Design, 2008, 72(6): 540–550
Weis D C, Visco D P. Computer-aided molecular design using the signature molecular descriptor: application to solvent selection. Computers & Chemical Engineering, 2010, 34(7): 1018–1029
Chemmangattuvalappil N G, Solvason C C, Bommareddy S, Eden M R. Reverse problem formulation approach to molecular design using property operators based on signature descriptors. Computers & Chemical Engineering, 2010, 34(12): 2062–2071
Ng L Y, Andiappan V, Chemmangattuvalappil N G, Ng D K S. A systematic methodology for optimal mixture design in an integrated biorefinery. Computers & Chemical Engineering, 2015, 81: 288–309
Marrero J, Gani R. Group-contribution based estimation of pure component properties. Fluid Phase Equilibria, 2001, 183–184: 183–208
Conte E, Martinho A, Matos H A, Gani R. Combined group-contribution and atom connectivity index-based methods for estimation of surface tension and viscosity. Industrial & Engineering Chemistry Research, 2008, 47(20): 7940–7954
Hukkerikar A S, Kalakul S, Sarup B, Young D M, Sin G, Gani R. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis. Journal of Chemical Information and Modeling, 2012, 52(11): 2823–2839
Zhang L, Cignitti S, Gani R. Generic mathematical programming formulation and solution for computer-aided molecular design. Computers & Chemical Engineering, 2015, 78: 79–84
Gani R, Nielsen B, Fredenslund A. A group contribution approach to computer-aided molecular design. AIChE Journal. American Institute of Chemical Engineers, 1991, 37(9): 1318–1332
van Dyk B, Nieuwoudt I. A computer-aided molecular design of solvents for distillation processes. In: International Conference on Distillation and Absorption. Düsseldorf: Verein Deutscher Ingenieure e.V. (VDI), 2002, 1
Faulon J L, Churchwell C J, Visco D P. The signature molecular descriptor 2 enumerating molecules from their extended valence sequences. Journal of Chemical Information and Computer Sciences, 2003, 43(3): 721–734
Prausnitz J M, Lichtenthaler R N, Azevedo E G. Molecular Thermodynamics of Fluid-Phase Equilibria. 3rd ed. Upper Saddle River: Prentice-Hall, 1999, 687–696
Pacheco R, Silva C. Global warming potential of biomass-to-ethanol: review and sensitivity analysis through a case study. Energies, 2019, 12(13): 2535
Ooi J, Ng D K S, Chemmangattuvalappil N G. Optimal molecular design towards an environmental friendly solvent recovery process. Computers & Chemical Engineering, 2018, 117: 391–409
Linstrom P J, Mallard W G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg MD: National Institute of Standards and Technology, 2021
Manara P, Bezergianni S, Pfisterer U. Study on phase behavior and properties of binary blends of bio-oil/fossil-based refinery intermediates: a step toward bio-oil refinery integration. Energy Conversion and Management, 2018, 165: 304–315
Asadullah M, Ab Rasid N S, Kadir S A S A, Azdarpour A. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 2013, 59: 316–324
Acknowledgements
The authors would like to express sincere gratitude to Ministry of Higher Education Malaysia for the realization of this research project under the Grant FRGS/1/2019/TK02/UNIM/02/1. However, only the authors are responsible for the opinion expressed in this paper and for any remaining errors.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
11705_2021_2056_MOESM1_ESM.pdf
Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework
Rights and permissions
About this article
Cite this article
Chong, J.W., Thangalazhy-Gopakumar, S., Muthoosamy, K. et al. Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework. Front. Chem. Sci. Eng. 16, 168–182 (2022). https://doi.org/10.1007/s11705-021-2056-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11705-021-2056-8
Keywords
- computer-aided molecular design
- bio-oil additives
- molecular signature descriptor