Skip to main content
Log in

A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Chemosensor arrays have a great potential for on-site applications in real-world scenarios. However, to fabricate on chemosensor array a number of chemosensors are required to obtain various optical patterns for multi-analyte detection. Herein, we propose a minimized chemosensor array composed of only two types of carboxylate-functionalized polythiophene derivatives for the detection of eight types of metal ions. Upon recognition of the metal ions, the polythiophenes exhibited changes in their fluorescence intensity and various spectral shifts. Although both chemosensors have the same polymer backbone and recognition moiety, only the difference in the number of methylene groups contributed to the difference in the fluorescence response patterns. Consequently, the metal ions in aqueous media were successfully discriminated qualitatively and quantitatively by the chemosensor microarray on the glass chip. This study offers an approach for achieving a minimized chemosensor array just by changing the alkyl chain lengths without the necessity for many receptors and reporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anzenbacher P Jr, Lubal P, Buček P, Palacios M A, Kozelkova M E. A practical approach to optical cross-reactive sensor arrays. Chemical Society Reviews, 2010, 39(10): 3954–3979

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Askim J R, Suslick K S. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chemical Reviews, 2019, 119(1): 231–292

    Article  CAS  PubMed  Google Scholar 

  3. Diehl K L, Anslyn E V. Array sensing using optical methods for detection of chemical and biological hazards. Chemical Society Reviews, 2013, 42(22): 8596–8611

    Article  CAS  PubMed  Google Scholar 

  4. Sasaki Y, Kubota R, Minami T. Molecular self-assembled chemosensors and their arrays. Coordination Chemistry Reviews, 2021, 429: 213607

    Article  CAS  Google Scholar 

  5. Smith D G, Topolnicki I L, Zwicker V E, Jolliffe K A, New E J. Fluorescent sensing arrays for cations and anions. Analyst, 2017, 142(19): 3549–3563

    Article  CAS  PubMed  Google Scholar 

  6. Lavigne J J, Anslyn E V. Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angewandte Chemie International Edition, 2001, 40(17): 3118–3130

    Article  CAS  PubMed  Google Scholar 

  7. Geng Y, Peveler W J, Rotello V M. Array-based “chemical nose” sensing in diagnostics and drug discovery. Angewandte Chemie International Edition, 2019, 58(16): 5190–5200

    Article  CAS  PubMed  Google Scholar 

  8. Shimizu K D, Stephenson C J. Molecularly imprinted polymer sensor arrays. Current Opinion in Chemical Biology, 2010, 14(6): 743–750

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda M, Ochi R, Hamachi I. Supramolecular hydrogel-based protein and chemosensor array. Lab on a Chip, 2010, 10(24): 3325–3334

    Article  CAS  PubMed  Google Scholar 

  10. Lemieux É J, Leclerc M. Conjugated Polyelectrolytes: Fundamentals and Applications. New Jersey: Wiley-VCH Weinheim, 2013, 231–261

    Google Scholar 

  11. McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7): 2537–2574

    Article  CAS  PubMed  Google Scholar 

  12. Bunz U H F. Poly(p-phenyleneethynylene)s by alkyne metathesis. Accounts of Chemical Research, 2001, 34(12): 998–1010

    Article  CAS  PubMed  Google Scholar 

  13. Miranda O R, You C C, Phillips R, Kim I B, Ghosh P S, Bunz U H F, Rotello V M. Array-based sensing of proteins using conjugated polymers. Journal of the American Chemical Society, 2007, 129(32): 9856–9857

    Article  CAS  PubMed  Google Scholar 

  14. Rhee H W, Lee S W, Lee J S, Chang Y T, Hong J I. Focused fluorescent probe library for metal cations and biological anions. ACS Combinatorial Science, 2013, 15(9): 483–490

    Article  CAS  PubMed  Google Scholar 

  15. Ihde M H, Pridmore C F, Bonizzoni M. Pattern-based recognition systems: overcoming the problem of mixtures. Analytical Chemistry, 2020, 92(24): 16213–16220

    Article  CAS  PubMed  Google Scholar 

  16. Han J, Wang B, Bender M, Seehafer K, Bunz U H F. Water-soluble poly(p-aryleneethynylene)s: a sensor array discriminates aromatic carboxylic acids. ACS Applied Materials & Interfaces, 2016, 8(31): 20415–20421

    Article  CAS  Google Scholar 

  17. Sasaki Y, Kojima S, Hamedpour V, Kubota R, Takizawa S, Yoshikawa I, Houjou H, Kubo Y, Minami T. Accurate chiral pattern recognition for amines from just a single chemosensor. Chemical Science, 2020, 11(15): 3790–3796

    Article  CAS  Google Scholar 

  18. Cao Z, Cao Y, Kubota R, Sasaki Y, Asano K, Lyu X, Zhang Z, Zhou Q, Zhao X, Xu X, Wu S, Minami T, Liu Y. Fluorescence anion chemosensor array based on pyrenylboronic acid. Frontiers in Chemistry, 2020, 8: 414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao Y, Zhang L, Huang X, Xin Y, Ding L. Discrimination of metalloproteins by a mini sensor array based on bispyrene fluorophore/surfactant aggregate ensembles. ACS Applied Materials & Interfaces, 2016, 8(51): 35650–35659

    Article  CAS  Google Scholar 

  20. Anzenbacher P Jr, Liu Y, Palacios M A, Minami T, Wang Z, Nishiyabu R. Leveraging material properties in fluorescence anion sensor arrays: a general approach. Chemistry—A European Journal, 2013, 19(26): 8497–8506

    Article  CAS  Google Scholar 

  21. Sasaki Y, Leclerc É, Hamedpour V, Kubota R, Takizawa S, Sakai Y, Minami T. Simplest chemosensor array for phosphorylated saccharides. Analytical Chemistry, 2019, 91(24): 15570–15576

    Article  CAS  PubMed  Google Scholar 

  22. Zaubitzer F, Buryak A, Severin K. Cp*Rh-based indicator-displacement assays for the identification of amino sugars and aminoglycosides. Chemistry—A European Journal, 2006, 12(14): 3928–3934

    Article  CAS  Google Scholar 

  23. Palacios M A, Wang Z, Montes V A, Zyryanov G V, Anzenbacher P Jr Rational design of a minimal size sensor array for metal ion detection. Journal of the American Chemical Society, 2008, 130(31): 10307–10314

    Article  CAS  PubMed  Google Scholar 

  24. Liang X, Bonizzoni M. Boronic acid-modified poly(amidoamine) dendrimers as sugar-sensing materials in water. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2016, 4(18): 3094–3103

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Wang P, Liu X, Yi X, Zhou Z, Liu D. Supramolecular fluorescent sensor array for simultaneous qualitative and quantitative analysis of quaternary ammonium herbicides. New Journal of Chemistry, 2018, 42(21): 17317–17322

    Article  CAS  Google Scholar 

  26. Yao Z, Feng X, Hong W, Li C, Shi G. A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Chemical Communications, 2009, 31(31): 4696–4698

    Article  Google Scholar 

  27. Maynor M S, Deason T K, Nelson T L, Lavigne J J. Multidimensional response analysis towards the detection and identification of soft divalent metal ions. Supramolecular Chemistry, 2009, 21(3–4): 310–315

    Article  CAS  Google Scholar 

  28. Li C, Shi G. Polythiophene-based optical sensors for small molecules. ACS Applied Materials & Interfaces, 2013, 5(11): 4503–4510

    Article  CAS  Google Scholar 

  29. Doré K, Dubus S, Ho H A, Lévesque I, Brunette M, Corbeil G, Boissinot M, Boivin G, Bergeron M G, Boudreau D, Leclerc M. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole Level. Journal of the American Chemical Society, 2004, 126(13): 4240–4244

    Article  PubMed  Google Scholar 

  30. McCullough R D, Ewbank P C, Loewe R S. Self-assembly and disassembly of regioregular, water soluble polythiophenes: chemoselective ionchromatic sensing in water. Journal of the American Chemical Society, 1997, 119(3): 633–634

    Article  CAS  Google Scholar 

  31. Li C, Numata M, Takeuchi M, Shinkai S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angewandte Chemie International Edition, 2005, 44(39): 6371–6374

    Article  CAS  PubMed  Google Scholar 

  32. Ho H A, Leclerc M. New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodidespecific detection. Journal of the American Chemical Society, 2003, 125(15): 4412–4413

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki Y, Ito S, Zhang Z, Lyu X, Takizawa S, Kubota R, Minami T. Supramolecular sensor for astringent procyanidin C1: fluorescent artificial tongue for wine components. Chemistry—A European Journal, 2020, 26(69): 16236–16240

    Article  CAS  Google Scholar 

  34. Domínguez S E, Meriläinen M, Ääritalo T, Damlin P, Kvarnström C. Effect of alkoxy-spacer length and solvent on diluted solutions of cationic isothiouronium polythiophenes. RSC Advances, 2017, 7(13): 7648–7657

    Article  Google Scholar 

  35. Minami T, Kubo Y. Fluorescence sensing of phytate in water using an isothiouronium-attached polythiophene. Chemistry—A Asian Journal, 2010, 5(3): 605–611

    Article  CAS  Google Scholar 

  36. An Y, Xiao K, Yao Z, Li C. Conjugated polyelectrolyte based colorimetric array for the discrimination of primary amino acids. ChemistrySelect, 2020, 5(18): 5400–5403

    Article  CAS  Google Scholar 

  37. Liu L, Zhao L, Cheng D, Yao X, Lu Y. Highly selective fluorescence sensing and imaging of ATP using a boronic acid groups-bearing polythiophene derivate. Polymers, 2019, 11(7): 1139

    Article  CAS  PubMed Central  Google Scholar 

  38. Pal S, Chatterjee N, Bharadwaj P K. Selectively sensing first-row transition metal ions through fluorescence enhancement. RSC Advances, 2014, 4(51): 26585–26620

    Article  CAS  Google Scholar 

  39. Wang Z, Palacios M A, Anzenbacher P Jr Fluorescence sensor array for metal ion detection based on various coordination chemistries: general performance and potential application. Analytical Chemistry, 2008, 80(19): 7451–7459

    Article  CAS  PubMed  Google Scholar 

  40. Xu W, Ren C, Teoh C L, Peng J, Gadre S H, Rhee H W, Lee C L K, Chang Y T. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Analytical Chemistry, 2014, 86(17): 8763–8769

    Article  CAS  PubMed  Google Scholar 

  41. Smith D G, Sajid N, Rehn S, Chandramohan R, Carney I J, Khan M A, New E J. A library-screening approach for developing a fluorescence sensing array for the detection of metal ions. Analyst, 2016, 141(15): 4608–4613

    Article  CAS  PubMed  Google Scholar 

  42. Hwang I H, Hong K I, Jeong K S, Jang W D. Carbazole-based molecular tweezers as platforms for the discrimination of heavy metal ions. RSC Advances, 2015, 5(2): 1097–1102

    Article  CAS  Google Scholar 

  43. Sasaki Y, Minamiki T, Tokito S, Minami T. A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chemical Communications, 2017, 53(49): 6561–6564

    Article  CAS  PubMed  Google Scholar 

  44. Inoue M B, Velazquez E F, Inoue M. One-step chemical synthesis of doped polythiophene by use of copper(II) perchlorate as an oxidant. Synthetic Metals, 1988, 24(3): 223–229

    Article  CAS  Google Scholar 

  45. Minami T, Kubo Y. Selective anion-induced helical aggregation of chiral amphiphilic polythiophenes with isothiouronium-appended pendants. Supramolecular Chemistry, 2011, 23(1–2): 13–18

    Article  CAS  Google Scholar 

  46. Derakhshesh M, Gray M R, Dechaine G P. Dispersion of asphaltene nanoaggregates and the role of rayleigh scattering in the absorption of visible electromagnetic radiation by these nanoaggregates. Energy & Fuels, 2013, 27(2): 680–693

    Article  CAS  Google Scholar 

  47. Rasmussen S C, Evenson S J, McCausland C B. Fluorescent thiophene-based materials and their outlook for emissive applications. Chemical Communications, 2015, 51(22): 4528–4543

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Zhao J, Guo C, Pei M, Zhang G. Simple hydrazide-based fluorescent sensors for highly sensitive and selective optical signaling of Cu2+ and Hg2+ in aqueous solution. Sensors and Actuators. B, Chemical, 2014, 193: 157–165

    Article  CAS  Google Scholar 

  49. Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in stern-volmer plots. Journal of the American Chemical Society, 1983, 105(6): 1494–1498

    Article  CAS  Google Scholar 

  50. You J, Kim J, Park T, Kim B, Kim E. Highly fluorescent conjugated polyelectrolyte nanostructures: synthesis, self-assembly, and Al3+ ion sensing. Advanced Functional Materials, 2012, 22(7): 1417–1424

    Article  CAS  Google Scholar 

  51. Chen Y, Pu K Y, Fan Q L, Qi X Y, Huang Y Q, Lu X M, Huang W. Water-soluble anionic conjugated polymers for metal ion sensing: effect of interchain aggregation. Journal of Polymer Science. Part A, Polymer Chemistry, 2009, 47(19): 5057–5067

    Article  CAS  Google Scholar 

  52. Bala T, Prasad B L V, Sastry M, Kahaly M U, Waghmare U V. Interaction of different metal ions with carboxylic acid group: a quantitative study. Journal of Physical Chemistry A, 2007, 111(28): 6183–6190

    Article  CAS  Google Scholar 

  53. Miller J N, Miller J C. Statistics and Chemometrics for Analytical Chemistry. 7th ed. Essex: Pearson Higher Education, 2018

    Google Scholar 

  54. Wolfbeis O S. Materials for fluorescence-based optical chemical sensors. Journal of Materials Chemistry, 2005, 15(27–28): 2657–2669

    Article  CAS  Google Scholar 

  55. Anzenbacher P Jr, Liu Y L, Kozelkova M E. Hydrophilic polymer matrices in optical array sensing. Current Opinion in Chemical Biology, 2010, 14(6): 693–704

    Article  CAS  PubMed  Google Scholar 

  56. Guo T R, Zhang G P, Zhang Y H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces. B, Biointerfaces, 2007, 57(2): 182–188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Tsuyoshi Minami thanks JSPS KAKENHI (Grant No. JP20K21204) and JST CREST (Grant No. JPMJCR2011). Yui Sasaki thanks JSPS KAKENHI (Grant No. JP18J21190). We also thank Dr. Shin-ya Takizawa of the University of Tokyo for the measurements of emission quantum yield and lifetime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Minami.

Supporting Information

11705_2021_2037_MOESM1_ESM.pdf

A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, Y., Lyu, X., Zhang, Z. et al. A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Front. Chem. Sci. Eng. 16, 72–80 (2022). https://doi.org/10.1007/s11705-021-2037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2037-y

Keywords

Navigation