Skip to main content
Log in

A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Pyridine is one of the main nitrogen-containing compounds in coal, and its pyrolytic mechanism to generate NOx precursors (mainly NH3 and HCN) remains unclear. In this work, the possible pathways for the pyrolysis of pyridine to form HCN and/or NH3 were investigated by the density functional theory method, and the effects of H2O on pyridine pyrolysis were also investigated. The results show that there are two possible reactions for the initial pyridine pyrolysis, i.e., internal hydrogen transfer and C-H bond homolysis, and that internal hydrogen transfer is more favorable. Nine possible reaction pathways following internal hydrogen transfer are obtained and analyzed. Among these pathways, pyridine prefers to produce HCN instead of NH3. The existence of H2O has significant effects on the decomposition of pyridine, as it participates in pyridine pyrolysis to form NH3 rather than HCN as the major product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ye C, Zheng Y, Xu Y, Li G, Dong C, Tang Y, Wang Q. Energy and exergy analysis of poly-generation system of hydrogen and electricity via coal partial gasification. Computers & Chemical Engineering, 2020, 141: 106911

    Article  CAS  Google Scholar 

  2. Xu M X, Wang H X, Ouyang H D, Zhao L, Lu Q. Direct catalytic decomposition of N2O over bismuth modified NiO catalysts. Journal of Hazardous Materials, 2020, 401: 123334

    Article  PubMed  CAS  Google Scholar 

  3. Satayeva A R, Howell C A, Korobeinyk A V, Jandosov J, Inglezakis V J, Mansurov Z A, Mikhalovsky S V. Investigation of rice husk derived activated carbon for removal of nitrate contamination from water. Science of the Total Environment, 2018, 630: 1237–1245

    Article  CAS  PubMed  Google Scholar 

  4. Cheng S, Qiao Y, Huang J, Wang W, Wang Z, Yu Y, Xu M. Effects of Ca and Na acetates on nitrogen transformation during sewage sludge pyrolysis. Proceedings of the Combustion Institute, 2019, 37(3): 2715–2722

    Article  CAS  Google Scholar 

  5. Kyriienko P I. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: a review. Frontiers of Chemical Science and Engineering, 2020, 14(4): 471–491

    Article  CAS  Google Scholar 

  6. Chu F, Su M, Yang G. Heat and mass transfer characteristics of ammonia regeneration in packed column. Applied Thermal Engineering, 2020, 176: 115405

    Article  CAS  Google Scholar 

  7. Fan W, Li Y, Guo Q, Chen C, Wang Y. Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal. Energy, 2017, 125: 417–426

    Article  CAS  Google Scholar 

  8. Zhang K, Li Y, Yuan T, Cai J, Glarborg P, Qi F. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure. Proceedings of the Combustion Institute, 2011, 33(1): 407–414

    Article  CAS  Google Scholar 

  9. Ye C, Wang Q, Zheng Y, Li G, Zhang Z, Luo Z. Techno-economic analysis of methanol and electricity poly-generation system based on coal partial gasification. Energy, 2019, 185: 624–632

    Article  CAS  Google Scholar 

  10. Peng Z, Chen L H, Sun M H, Wu P, Cai C, Deng Z, Li Y, Zheng W H, Su B L. Template-free synthesis of hierarchically macromesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2018, 12(1): 43–49

    Article  CAS  Google Scholar 

  11. Xu M H, Yu D X, Yao H, Liu X W, Qiao Y. Coal combustion-generated aerosols: formation and properties. Proceedings of the Combustion Institute, 2011, 33(1): 1681–1697

    Article  CAS  Google Scholar 

  12. Zhang H, Jiang X M, Liu J X, Liu J G. Theoretical study on the reactions originating from solid char (N): radical preference and possible surface N2 formation reactions. Industrial & Engineering Chemistry Research, 2019, 58(39): 18021–18026

    Article  CAS  Google Scholar 

  13. Hämäläinen J P, Aho M J, Tummavuori J L. Formation of nitrogen oxides from fuel-N through HCN and NH3: a model-compound study. Fuel, 1994, 73(12): 1894–1898

    Article  Google Scholar 

  14. Molina A, Eddings E G, Pershing D W, Sarofim A F. Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science, 2000, 26(4): 507–531

    Article  CAS  Google Scholar 

  15. Adamczyk W P, Werle S, Ryfa A. Application of the computational method for predicting NOx reduction within large scale coal-fired boiler. Applied Thermal Engineering, 2014, 73(1): 343–350

    Article  CAS  Google Scholar 

  16. Wang C A, Du Y, Jin X, Che D. Pyridine and pyrrole oxidation under oxy-fuel conditions. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2016, 38(7): 975–981

    Article  CAS  Google Scholar 

  17. Bacskay G B, Martoprawiro M, Mackie J C. The thermal decomposition of pyrrole: an ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel. Chemical Physics Letters, 1999, 300(3–4): 321–330

    Article  CAS  Google Scholar 

  18. Liu J, Zhang X L, Lu Q, Shaw A, Hu B, Jiang X Y, Dong C Q. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis. Journal of the Energy Institute, 2019, 92(3): 604–612

    Article  CAS  Google Scholar 

  19. Liu J, Lu Q, Jiang X Y, Hu B, Zhang X L, Dong C Q, Yang Y P. Theoretical investigation of the formation mechanism of NH3 and HCN during pyrrole pyrolysis: the effect of H2O. Molecules (Basel, Switzerland), 2018, 23(4): 711–721

    Article  CAS  Google Scholar 

  20. Duan L, Zhao C, Zhou W, Qu C, Chen X. Investigation on coal pyrolysis in CO2 atmosphere. Energy & Fuels, 2009, 23(7): 3826–3830

    Article  CAS  Google Scholar 

  21. Mackie J C, Colket M B, Nelson P F. Shock tube pyrolysis of pyridine. Journal of Physical Chemistry, 1990, 94(10): 4099–4106

    Article  CAS  Google Scholar 

  22. Ikeda E, Mackie J C. Thermal decomposition of two coal model compounds—pyridine and 2-picoline. Kinetics and product distributions. Journal of Analytical and Applied Pyrolysis, 1995, 34(1): 47–63

    Article  CAS  Google Scholar 

  23. Hong X, Zhang T C, Zhang L D, Qi F. Identification of intermediates in pyridine pyrolysis with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Chinese Journal of Chemical Physics, 2009, 22(2): 204–209

    Article  CAS  Google Scholar 

  24. Liang X R, Wang Q H, Luo Z Y, Zhang H, Li K K, Feng Y, Shaikh A R, Cen J M. Simulation of nitrogen transformation in pressurized oxy-fuel combustion of pulverized coal. RSC Advances, 2018, 8 (62): 35690–35699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Zhang S, Yang W, Liu Y, Yang H, Chen H. Evolution of NOx precursors during rapid pyrolysis of coals in CO2 atmosphere. Energy & Fuels, 2015, 29(11): 7474–7482

    Article  CAS  Google Scholar 

  26. Ninomiya Y, Dong Z B, Suzuki Y, Koketsu J. Theoretical study on the thermal decomposition of pyridine. Fuel, 2000, 79(3–4): 449–457

    Article  CAS  Google Scholar 

  27. Liu J, Zhang X L, Hu B, Lu Q, Liu D J, Dong C Q, Yang Y P. Formation mechanism of HCN and NH3 during indole pyrolysis: a theoretical DFT study. Journal of the Energy Institute, 2020, 93(2): 649–657

    Article  CAS  Google Scholar 

  28. Liu J, Zhang X L, Lu Q, Shaw A, Hu B, Jiang X Y, Dong C Q. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis. Journal of the Energy Institute, 2019, 92(3): 604–612

    Article  CAS  Google Scholar 

  29. Han X X, Chen B, Li Q Y, Tong J H, Jiang X M. Organic nitrogen conversion during the thermal decomposition of Huadian oil shale of China. Oil Shale, 2017, 34(2): 97

    Article  CAS  Google Scholar 

  30. Hu E, Zeng X, Ma D, Wang F, Yi X, Li Y, Fu X. Effect of the moisture content in coal on the pyrolysis behavior in an indirectly heated fixed-bed reactor with internals. Energy & Fuels, 2017, 31 (2): 1347–1354

    Article  CAS  Google Scholar 

  31. Park D C, Day S J, Nelson P F. Nitrogen release during reaction of coal char with O2, CO2, and H2O. Proceedings of the Combustion Institute, 2005, 30(2): 2169–2175

    Article  CAS  Google Scholar 

  32. Yang H K. Experimental study on N migration of biomass pyrolysis and gasification process in tubular furnace. Dissertation for the Master’s Degree. Anhui: University of Science and Technology of China, 2016, 32–37

    Google Scholar 

  33. Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: a comparative study of coal and biomass. Energy & Fuels, 2007, 21(2): 517–521

    Article  CAS  Google Scholar 

  34. Frisch M, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G, et al. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  35. Becke A. Density-functional thermochemistry. III. the role of exact exchange. Journal of Chemical Physics, 1993, 98(7): 5648–5652

    Article  CAS  Google Scholar 

  36. Zhang X L, Li J, Yang W H, Blasiak W. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis. Energy & Fuels, 2011, 25(8): 3739–3746

    Article  CAS  Google Scholar 

  37. Zhang H, Jiang X M, Liu J X, Shen J. Theoretical study on the specific role of superfine char surface oxygen—NO consumption mechanism. Powder Technology, 2013, 249: 82–88

    Article  CAS  Google Scholar 

  38. Shinohara Y, Tsubouchi N. Effect of the electronic state on low-rank coals with Ca2+ ion exchange. Journal of Molecular Structure, 2020, 1218: 128544

    Article  CAS  Google Scholar 

  39. Zhan J H, Wu R C, Liu X X, Gao S Q, Xu G W. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation. Fuel, 2014, 134: 283–292

    Article  CAS  Google Scholar 

  40. Bagdžiūnas G, Ramanavičius A. Towards direct enzyme wiring: a theoretical investigation of charge carrier transfer mechanisms between glucose oxidase and organic semiconductors. Physical Chemistry Chemical Physics, 2019, 21(6): 2968–2976

    Article  PubMed  Google Scholar 

  41. Liu S, Wu Y G, Zhou C S, Wu J M, Zhang Y L. Study on the CO formation mechanism during coal ambient temperature oxidation. Energies, 2020, 13(10): 2587

    Article  CAS  Google Scholar 

  42. Ling L X, Zhang R G, Wang B J, Xie K C. Density functional theory study on the pyrolysis mechanism of thiophene in coal. Journal of Molecular Structure THEOCHEM, 2009, 905(1–3): 8–12

    Article  CAS  Google Scholar 

  43. Beste A, Buchanan A III. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. Journal of Organic Chemistry, 2009, 74(7): 2837–2841

    Article  CAS  PubMed  Google Scholar 

  44. Mphahlele M J, Maluleka M M, Rhyman L, Ramasami P, Mampa R M. Spectroscopic, DFT, and XRD studies of hydrogen bonds in N-unsubstituted 2-aminobenzamides. Molecules (Basel, Switzerland), 2017, 22(1): 83–96

    Article  CAS  Google Scholar 

  45. Jiang X Y, Lu Q, Hu B, Liu J, Dong C Q, Yang Y P. A comprehensive study on pyrolysis mechanism of substituted β-O-4 type lignin dimers. International Journal of Molecular Sciences, 2017, 18(11): 2364–2377

    Article  PubMed Central  CAS  Google Scholar 

  46. Lin J Y, Zhang S, Zhang L, Min Z H, Tay H L, Li C Z. HCN and NH3 formation during coal/char gasification in the presence of NO. Environmental Science & Technology, 2010, 44(10): 3719–3723

    Article  CAS  Google Scholar 

  47. Li C Z, Tan L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel, 2000, 79(15): 1899–1906

    Article  CAS  Google Scholar 

  48. Chang L, Xie Z, Xie K C, Pratt K C, Hayashi J I, Chiba T, Li C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN. Fuel, 2003, 82(10): 1159–1166

    Article  CAS  Google Scholar 

  49. Chang L P, Xie Z L, Xie K C. Study on the formation of NH3 and HCN during the gasification of brown coal in steam. Process Safety and Environmental Protection, 2006, 84(6): 446–452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant Nos. 51922040 and 51821004), China Postdoctoral Science Foundation (Grant No. 2019TQ0091), Grants from Fok Ying Tung Education Foundation (Grant No. 161051), and Fundamental Research Funds for the Central Universities (Grant Nos. 2020DF01, 2020 MS020, 2018ZD08) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu.

Electronic Supplementary Materials

11705_2020_2024_MOESM1_ESM.pdf

A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Fan, X., Zhao, W. et al. A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors. Front. Chem. Sci. Eng. 15, 1217–1228 (2021). https://doi.org/10.1007/s11705-020-2024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2024-8

Keywords

Navigation