Schiffer H W, Kober T, Panos E. World energy council’s global energy scenarios to 2060. Magazine for Energy Industry, 2018, 42(2): 91–102
Google Scholar
Johansson T B, Patwardhan A P, Nakicenovic N, Gomez Echeverri L. Global Energy Assessment: Toward A Sustainable Future. Cambridge UK and New York, Laxenburg, Austria: Cambridge University Press, and the International Institute for Applied Systems Analysis, 2012, 99–1257
Google Scholar
Carapellucci R, Milazzo A. Membrane systems for CO2 capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2003, 217(5): 505–517
CAS
Google Scholar
Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. Acceleration ofglobal warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184–187
CAS
PubMed
Google Scholar
Koytsoumpa E I, Bergins C, Kakaras E. The CO2 economy: review of CO2 capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132: 3–16
CAS
Google Scholar
Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S. Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55–125
CAS
Google Scholar
Jansen D, Gazzani M, Manzolini G, Van Dijk E, Carbo M. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2015, 40: 167–187
CAS
Google Scholar
Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B, Davidson O, De Coninck H, eds. New York: Cambridge University Press, 2005, 431
Wang Y, Zhao L, Otto A, Robinius M, Stolten D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114: 650–665
CAS
Google Scholar
Nagy E. Basic Equations of Mass Transport Through A Membrane Layer. Amsterdam: Elsevier, 2018, 11–87
Google Scholar
Khulbe K, Matsuura T. Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 2018, 8(1): 19
Google Scholar
Luis P, van Gerven T, van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture. Progress in Energy and Combustion Science, 2012, 38(3): 419–448
CAS
Google Scholar
Hafeez S, Al-Salem S, Constantinou A. Membrane reactors for renewable fuel production and their environmental benefits, in membranes for environmental applications. Vol. 42. Switzerland: Springer, 2020, 383–411
Google Scholar
Li J L, Chen B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005, 41(2): 109–122
CAS
Google Scholar
Sun X, Constantinou A, Gavriilidis A. Stripping of acetone from isopropanol solution with membrane and mesh gasliquid contactors. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 991–997
CAS
Google Scholar
Constantinou A, Ghiotto F, Lam K F, Gavriilidis A. Stripping of acetone from water with microfabricated and membrane gasliquid contactors. Analyst (London), 2014, 139(1): 266–272
CAS
Google Scholar
Ilyas M, Ahmad W, Khan H, Yousaf S, Khan K, Nazir S. Plastic waste as a significant threat to environment—asystematic literature review. Reviews on Environmental Health, 2018, 33(4): 383–406
PubMed
Google Scholar
Favre E. Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59
CAS
Google Scholar
Baltus R E, Counce R M, Culbertson B H, Luo H, DePaoli D W, Dai S, Duckworth D C. Examination of the potential of ionic liquids for gas separations. Separation Science and Technology, 2005, 40(1–3): 525–541
CAS
Google Scholar
Yan S P, Fang M X, Zhang W F, Wang S Y, Xu Z K, Luo Z Y, Cen K F. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Processing Technology, 2007, 88(5): 501–511
CAS
Google Scholar
Langevin D, Pinoche M, Se E, Me M, Roux R. CO2 facilitated transport through functionalized cation-exchange membranes. Journal of Membrane Science, 1993, 82(1–2): 51–63
CAS
Google Scholar
Li K, Teo W K. Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules. Separation and Purification Technology, 1998, 13(1): 79–88
CAS
Google Scholar
Suzuki H, Tanaka K, Kita H, Okamoto K, Hoshino H, Yoshinaga T, Kusuki Y. Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 1998, 146(1): 31–37
CAS
Google Scholar
Tokuda Y, Fujisawa E, Okabayashi N, Matsumiya N, Takagi K, Mano H, Haraya K, Sato M. Development of hollow fiber membranes for CO2 separation. Energy Conversion and Management, 1997, 38: S111–S116
CAS
Google Scholar
Gong Y, Wang Z, Wang S. Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module. Chemical Engineering and Processing: Process Intensification, 2006, 45(8): 652–660
CAS
Google Scholar
Ismail A F, Yaacob N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system. Journal of Membrane Science, 2006, 275(1–2): 151–165
CAS
Google Scholar
Kapantaidakis G, Koops G, Wessling M, Kaldis S, Sakellaropoulos G. CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(7): 1702–1711
CAS
Google Scholar
Dae-Hwan L, Hyung-Taek K. Simulation study of CO2 separation process by using hollow fiber membrane. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 829–830
Google Scholar
Lee Y, Noble R D, Yeom B Y, Park Y I, Lee K H. Analysis of CO2 removal by hollow fiber membrane contactors. Journal of Membrane Science, 2001, 194(1): 57–67
CAS
Google Scholar
Liu L, Chakma A, Feng X. CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes. Industrial & Engineering Chemistry Research, 2005, 44(17): 6874–6882
CAS
Google Scholar
Qin J J, Chung T S, Cao C, Vora R. Effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) copolyimide and fabrication of its hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2005, 250(1–2): 95–103
CAS
Google Scholar
Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N. Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. Journal of Membrane Science, 2004, 234(1–2): 83–94
CAS
Google Scholar
Wang R, Li D, Liang D. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 849–856
CAS
Google Scholar
Wang R, Zhang H, Feron P, Liang D. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 2005, 46(1–2): 33–40
CAS
Google Scholar
Shim H M, Lee J S, Wang H Y, Choi S H, Kim J H, Kim H T. Modeling and economic analysis of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2007, 24(3): 537–541
CAS
Google Scholar
Zhang H Y, Wang R, Liang D T, Tay J H. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. Journal of Membrane Science, 2006, 279(1–2): 301–310
CAS
Google Scholar
Al Marzouqi M, El Naas M H, Marzouk S A, Abdullatif N. Modeling of chemical absorption of CO2 in membrane contactors. Separation and Purification Technology, 2008, 62(3): 499–506
CAS
Google Scholar
Al Marzouqi M H, El Naas M H, Marzouk S A, Al Zarooni M A, Abdullatif N, Faiz R. Modeling of CO2 absorption in membrane contactors. Separation and Purification Technology, 2008, 59(3): 286–293
CAS
Google Scholar
El Naas M H, Al Marzouqi M, Marzouk S A, Abdullatif N. Evaluation of the removal of CO2 using membrane contactors: membrane wettability. Journal of Membrane Science, 2010, 350(1–2): 410–416
CAS
Google Scholar
Faiz R, Al Marzouqi M. Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. Journal of Membrane Science, 2009, 342(1–2): 269–278
CAS
Google Scholar
Ji P, Cao Y, Zhao H, Kang G, Jie X, Liu D, Liu J, Yuan Q. Preparation of hollow fiber poly (N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation. Journal of Membrane Science, 2009, 342(1–2): 190–197
CAS
Google Scholar
Keshavarz P, Fathikalajahi J, Ayatollahi S. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. Journal of Hazardous Materials, 2008, 152(3): 1237–1247
CAS
PubMed
Google Scholar
Kumar A, Yuan X, Sahu A K, Dewulf J, Ergas S J, Van Langenhove H. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(3): 387–394
CAS
Google Scholar
Lu J G, Ji Y, Zhang H, Chen M D. CO2 capture using activated amino acid salt solutions in a membrane contactor. Separation Science and Technology, 2010, 45(9): 1240–1251
CAS
Google Scholar
Lu J G, Zheng Y F, Cheng M D. Membrane contactor for CO2 absorption applying amino-acid salt solutions. Desalination, 2009, 249(2): 498–502
CAS
Google Scholar
Mansourizadeh A, Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988
CAS
Google Scholar
Mansourizadeh A, Ismail A F, Abdullah M, Ng B. Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. Journal of Membrane Science, 2010, 355(1–2): 200–207
CAS
Google Scholar
Mansourizadeh A, Ismail A F, Matsuura T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 2010, 353(1–2): 192–200
CAS
Google Scholar
Marzouk S A, Al-Marzouqi M H, El-Naas M H, Abdullatif N, Ismail Z M. Removal of carbon dioxide from pressurized CO2CH4 gas mixture using hollow fiber membrane contactors. Journal of Membrane Science, 2010, 351(1–2): 21–27
CAS
Google Scholar
Sandru M, Kim T J, Hägg M B. High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination, 2009, 240(1–3): 298–300
CAS
Google Scholar
Simons K, Nijmeijer K, Wessling M. Gasliquid membrane contactors for CO2 removal. Journal of Membrane Science, 2009, 340(1–2): 214–220
CAS
Google Scholar
Yan S, Fang M, Zhang W, Zhong W, Luo Z, Cen K. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Conversion and Management, 2008, 49(11): 3188–3197
CAS
Google Scholar
Zhang H Y, Wang R, Liang D T, Tay J H. Theoretical and experimental studies of membrane wetting in the membrane gasliquid contacting process for CO2 absorption. Journal of Membrane Science, 2008, 308(1–2): 162–170
CAS
Google Scholar
Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Effect of membrane module arrangement of gas-liquid membrane contacting process on CO2 absorption performance: a modeling study. Journal of Membrane Science, 2011, 372(1–2): 75–86
CAS
Google Scholar
Chen C C, Qiu W, Miller S J, Koros W J. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide. Journal of Membrane Science, 2011, 382(1–2): 212–221
CAS
Google Scholar
Sandru M, Haukebø S H, Hägg M B. Composite hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2010, 346(1): 172–186
CAS
Google Scholar
Simons K, Nijmeijer K, Mengers H, Brilman W, Wessling M. Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane contactors. ChemSusChem, 2010, 3(8): 939–947
CAS
PubMed
Google Scholar
Jin H G, Han S H, Lee Y M, Yeo Y K. Modeling and control of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2011, 28(1): 41–48
CAS
Google Scholar
Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R. CO2 stripping from monoethanolamine using a membrane contactor. Journal of Membrane Science, 2011, 376(1–2): 110–118
CAS
Google Scholar
Boributh S, Rongwong W, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 2012, 401: 175–189
Google Scholar
Ghasem N, Al-Marzouqi M, Zhu L. Preparation and properties of polyethersulfone hollow fiber membranes with O-xylene as an additive used in membrane contactors for CO2 absorption. Separation and Purification Technology, 2012, 92: 1–10
CAS
Google Scholar
Kim D H, Baek I H, Hong S U, Lee H K. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. Journal of Membrane Science, 2011, 372(1–2): 346–354
CAS
Google Scholar
Kumbharkar S, Liu Y, Li K. High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 2011, 375(1–2): 231–240
CAS
Google Scholar
Lee S H, Kim J N, Eom W H, Ko Y D, Hong S U, Back I H. Development of water gas shift/membrane hybrid system for precombustion CO2 capture in a coal gasification process. Energy Procedia, 2011, 4: 1139–1146
CAS
Google Scholar
Mansourizadeh A, Ismail A F. CO2 stripping from water through porous PVDF hollow fiber membrane contactor. Desalination, 2011, 273(2–3): 386–390
CAS
Google Scholar
Mansourizadeh A, Ismail A F. Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011, 5(4): 640–648
CAS
Google Scholar
Nguyen P, Lasseuguette E, Medina Gonzalez Y, Remigy J, Roizard D, Favre E. A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. Journal of Membrane Science, 2011, 377(1–2): 261–272
CAS
Google Scholar
Sohrabi M R, Marjani A, Moradi S, Davallo M, Shirazian S. Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Applied Mathematical Modelling, 2011, 35(1): 174–188
Google Scholar
Ghasem N, Al Marzouqi M, Rahim N A. Modeling of CO2 absorption in a membrane contactor considering solvent evaporation. Separation and Purification Technology, 2013, 110: 1–10
CAS
Google Scholar
Hassanlouei R N, Pelalak R, Daraei A. Wettability study in CO2 capture from flue gas using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 16: 233–240
CAS
Google Scholar
Hwang H Y, Nam S Y, Koh H C, Ha S Y, Barbieri G, Drioli E. The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 205–211
CAS
Google Scholar
Lively R P, Dose M E, Xu L, Vaughn J T, Johnson J, Thompson J A, Zhang K, Lydon M E, Lee J S, Liu L, Hu Z, Karvan O, Realff M J, Koros W J. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. Journal of Membrane Science, 2012, 423: 302–313
Google Scholar
Marzouk S A, Al-Marzouqi M H, Teramoto M, Abdullatif N, Ismail Z M. Simultaneous removal of CO2 and H2Sfrom pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors. Separation and Purification Technology, 2012, 86: 88–97
CAS
Google Scholar
Naim R, Ismail A F, Mansourizadeh A. Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping. Journal of Membrane Science, 2012, 423: 503–513
Google Scholar
Naim R, Ismail A F, Mansourizadeh A. Preparation of microporous PVDF hollow fiber membrane contactors for CO2 stripping from diethanolamine solution. Journal of Membrane Science, 2012, 392: 29–37
Google Scholar
Rahbari Sisakht M, Ismail A F, Matsuura T. Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 88: 99–106
CAS
Google Scholar
Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. Journal of Membrane Science, 2012, 415: 221–228
Google Scholar
Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. Effect of novel surface modifying macromolecules on morphology and performance of polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 99: 61–68
CAS
Google Scholar
Shirazian S, Marjani A, Rezakazemi M. Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Engineering with Computers, 2012, 28(2): 189–198
Google Scholar
Kim K, Ingole P G, Kim J, Lee H. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal, 2013, 233: 242–250
CAS
Google Scholar
Mehdipour M, Karami M, Keshavarz P, Ayatollahi S. Analysis of CO2 separation with aqueous potassium carbonate solution in a hollow fiber membrane contactor. Energy & Fuels, 2013, 27(4): 2185–2193
CAS
Google Scholar
Naim R, Ismail A F. Effect of fiber packing density on physical CO2 absorption performance in gas-liquid membrane contactor. Separation and Purification Technology, 2013, 115: 152–157
CAS
Google Scholar
Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, Wang S. PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228
CAS
Google Scholar
Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T, Emadzadeh D. Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2013, 116: 67–72
CAS
Google Scholar
Razavi S M R, Razavi S M J, Miri T, Shirazian S. CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control, 2013, 15: 142–149
CAS
Google Scholar
Shen J N, Yu C C, Zeng G N, Van der Bruggen B. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO2/N2 separation. International Journal of Molecular Sciences, 2013, 14(2): 3621–3638
CAS
PubMed
PubMed Central
Google Scholar
Amrei S M H H, Memardoost S, Dehkordi A M. Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(2): 657–672
CAS
Google Scholar
Chen H Z, Thong Z, Li P, Chung T S. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053
CAS
Google Scholar
Ghasem N, Al Marsouqi M, Rahim N A. Modeling and simulation of membrane contactor employed to strip CO2 from rich solvents via COMSOL Multiphysics®. In: Proceedings of the COMSOL Conference. Zurich: COMSL, 2014, 1–5
Google Scholar
He X, Kim T J, Hägg M B. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: membrane optimization and process condition investigation. Journal of Membrane Science, 2014, 470: 266–274
CAS
Google Scholar
Kimball E, Al Azki A, Gomez A, Goetheer E, Booth N, Adams D, Ferre D. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2014, 69(6): 1047–1058
Google Scholar
Kundu P K, Chakma A, Feng X. Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2014, 28: 248–256
CAS
Google Scholar
Li S, Wang Z, He W, Zhang C, Wu H, Wang J, Wang S. Effects of minor SO2 on the transport properties of fixed carrier membranes for CO2 capture. Industrial & Engineering Chemistry Research, 2014, 53(18): 7758–7767
CAS
Google Scholar
Wang L, Zhang Z, Zhao B, Zhang H, Lu X, Yang Q. Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Separation and Purification Technology, 2013, 116: 300–306
CAS
Google Scholar
Wang Z, Fang M, Pan Y, Yan S, Luo Z. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis. Chemical Engineering Science, 2013, 93: 238–249
CAS
Google Scholar
Wang Z, Fang M, Yu H, Wei C C, Luo Z. Experimental and modeling study of trace CO2 removal in a hollow-fiber membrane contactor, using CO2-loaded monoethanolamine. Industrial & Engineering Chemistry Research, 2013, 52(50): 18059–18070
CAS
Google Scholar
Yoshimune M, Haraya K. CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia, 2013, 37: 1109–1116
CAS
Google Scholar
Zhao Y, Ho W W. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Industrial & Engineering Chemistry Research, 2012, 52(26): 8774–8782
Google Scholar
Ma C, Koros W J. Effects of hydrocarbon and water impurities on CO2/CH4 separation performance of ester-crosslinked hollow fiber membranes. Journal of Membrane Science, 2014, 451: 1–9
CAS
Google Scholar
Makhloufi C, Lasseuguette E, Remigy J C, Belaissaoui B, Roizard D, Favre E. Ammonia based CO2 capture process using hollow fiber membrane contactors. Journal of Membrane Science, 2014, 455: 236–246
CAS
Google Scholar
Mansourizadeh A, Aslmahdavi Z, Ismail A F, Matsuura T. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption. International Journal of Greenhouse Gas Control, 2014, 26: 83–92
CAS
Google Scholar
Mansourizadeh A, Pouranfard A R. Microporous polyvinylidene fluoride hollow fiber membrane contactors for CO2 stripping: effect of PEG-400 in spinning dope. Chemical Engineering Research & Design, 2014, 92(1): 181 -190
CAS
Google Scholar
Masoumi S, Keshavarz P, Rastgoo Z. Theoretical investigation on CO2 absorption into DEAB solution using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2014, 18: 23–30
CAS
Google Scholar
Rahbari Sisakht M, Rana D, Matsuura T, Emadzadeh D, Padaki M, Ismail A F. Study on CO2 stripping from water through novel surface modified PVDF hollow fiber membrane contactor. Chemical Engineering Journal, 2014, 246: 306–310
CAS
Google Scholar
Rahim N A, Ghasem N, Al Marzouqi M. Stripping of CO2 from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering, 2014, 21: 886–893
CAS
Google Scholar
Rezaei M A, Ismail A F, Hashemifard S A, Bakeri G, Matsuura T. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. International Journal of Greenhouse Gas Control, 2014, 26: 147–157
CAS
Google Scholar
Carapellucci R, Giordano L, Vaccarelli M. Study of a natural gas combined cycle with multi-stage membrane systems for CO2 post-combustion capture. Energy Procedia, 2015, 81: 412–421
CAS
Google Scholar
Farjami M, Moghadassi A, Vatanpour V. Modeling and simulation of CO2 removal in a polyvinylidene fluoride hollow fiber membrane contactor with computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 2015, 98: 41–51
CAS
Google Scholar
Goyal N, Suman S, Gupta S. Mathematical modeling of CO2 separation from gaseous-mixture using a hollow-fiber membrane module: physical mechanism and influence of partial-wetting. Journal of Membrane Science, 2015, 474: 64–82
CAS
Google Scholar
Lee H J, Magnone E, Park J H. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. Journal of Membrane Science, 2015, 494: 143–153
CAS
Google Scholar
Lee S, Choi J W, Lee S H. Separation of greenhouse gases (SF6, CF4 and CO2) in an industrial flue gas using pilot-scale membrane. Separation and Purification Technology, 2015, 148: 15–24
CAS
Google Scholar
Li Y, Li X, Wu H, Xin Q, Wang S, Liu Y, Tian Z, Zhou T, Jiang Z, Tian H, Cao X, Wang B. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation. Journal of Membrane Science, 2015, 493: 460–469
CAS
Google Scholar
Lock SSM, Lau K K, Ahmad F, Shariff A. Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. International Journal of Greenhouse Gas Control, 2015, 36: 114–134
CAS
Google Scholar
Mulukutla T, Chau J, Singh D, Obuskovic G, Sirkar K K. Novel membrane contactor for CO2 removal from flue gas by temperature swing absorption. Journal of Membrane Science, 2015, 493: 321–328
CAS
Google Scholar
Rahim N A, Ghasem N, Al Marzouqi M. Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2015, 26: 108–117
Google Scholar
Sadoogh M, Mansourizadeh A, Mohammadinik H. An experimental study on the stability of PVDF hollow fiber membrane contactors for CO2 absorption with alkanolamine solutions. Royal Society of Chemistry Advances, 2015, 5(105): 86031–86040
CAS
Google Scholar
Vakharia V, Ramasubramanian K, Ho W W. An experimental and modeling study of CO2-selective membranes for IGCC syngas purification. Journal of Membrane Science, 2015, 488: 56–66
CAS
Google Scholar
Wickramanayake S, Hopkinson D, Myers C, Hong L, Feng J, Seol Y, Plasynski D, Zeh M, Luebke D. Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications. Journal of Membrane Science, 2014, 470: 52–59
CAS
Google Scholar
Yan S, He Q, Zhao S, Wang Y, Ai P. Biogas upgrading by CO2 removal with a highly selective natural amino acid salt ingas-liquid membrane contactor. Chemical Engineering and Processing: Process Intensification, 2014, 85: 125–135
CAS
Google Scholar
Zaidiza D A, Billaud J, Belaissaoui B, Rode S, Roizard D, Favre E. Modeling of CO2 post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. Journal of Membrane Science, 2014, 455: 64–74
Google Scholar
Zhang L, Qu Z Y, Yan Y F, Ju S X, Zhang Z E. Numerical investigation of the effects of polypropylene hollow fibre membrane structure on the performance of CO2 removal from flue gas. Royal Society of Chemistry Advances, 2015, 5(1): 424–433
CAS
Google Scholar
Zhang X, Seames W S, Tande B M. Recovery of CO2 from monoethanolamine using a membrane contactor. Separation Science and Technology, 2014, 49(1): 1–11
Google Scholar
Zhang Y, Wang R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas-liquid membrane contactor. Journal of Membrane Science, 2014, 452: 379–389
CAS
Google Scholar
Zhang Z, Yan Y, Zhang L, Chen Y, Ju S. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 2014, 19: 311–316
CAS
Google Scholar
Zhang Z, Yan Y, Zhang L, Ju S. Numerical simulation and analysis of CO2 removal in a polypropylene hollow fiber membrane contactor. International Journal of Chemical Engineering, 2014, 2014: 1–7
Google Scholar
Baghban A, Azar A A. ANFIS modeling of CO2 separation from natural gas using hollow fiber polymeric membrane. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2018, 40(2): 193–199
CAS
Google Scholar
Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520: 860–868
CAS
Google Scholar
Ghadiri M, Marjani A, Shirazian S. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes. Environmental Science and Pollution Research International, 2017, 24(16): 14508–14515
CAS
PubMed
Google Scholar
Gilassi S, Rahmanian N. CFD modelling of a hollow fibre membrane for CO2 removal by aqueous amine solutions of MEA, DEA and MDEA. International Journal of Chemical Reactor Engineering, 2016, 14(1): 53–61
CAS
Google Scholar
Hosseini S, Mansourizadeh A. Preparation ofporous hydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 156–166
CAS
Google Scholar
Jin P, Huang C, Shen Y, Zhan X, Hu X, Wang L, Wang L. Simultaneous separation of H2S and CO2 from biogas by gasliquid membrane contactor using single and mixed absorbents. Energy & Fuels, 2017, 31(10): 11117–11126
CAS
Google Scholar
Jo E S, An X, Ingole P G, Choi W K, Park Y S, Lee H K. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287
CAS
Google Scholar
Jomekian A, Behbahani R M, Mohammadi T, Kargari A. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574
CAS
Google Scholar
Kim S J, Park A, Nam S E, Park Y I, Lee P S. Practical designs of membrane contactors and their performances in CO2/CH4 separation. Chemical Engineering Science, 2016, 155: 239–247
CAS
Google Scholar
Liao J, Wang Z, Wang M, Gao C, Zhao S, Wang J, Wang S. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane. Journal of Membrane Science, 2016, 511: 9–19
CAS
Google Scholar
Otani A, Zhang Y, Matsuki T, Kamio E, Matsuyama H, Maginn E J. Molecular design of high CO2 reactivity and low viscosity ionic liquids for CO2 separative facilitated transport membranes. Industrial & Engineering Chemistry Research, 2016, 55(10): 2821–2830
CAS
Google Scholar
Rafiq S, Deng L, Hägg M B. Role of facilitated transport membranes and composite membranes for efficient CO2 capture: a review. ChemBioEng Reviews, 2016, 3(2): 68–85
Google Scholar
Razavi S M R, Shirazian S, Nazemian M. Numerical simulation of CO2 separation from gas mixtures in membrane modules: effect of chemical absorbent. Arabian Journal of Chemistry, 2016, 9(1): 62–71
CAS
Google Scholar
Woo K T, Dong G, Lee J, Kim J S, Do Y S, Lee W H, Lee H S, Lee Y M. Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510: 472–480
CAS
Google Scholar
Yan Y, Zhang Z, Zhang L, Wang J, Li J, Ju S. Modeling of CO2 separation from flue gas by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membrane contactors: effect of gas and liquid parameters. Journal of Energy Engineering, 2014, 141(4): 04014034
Google Scholar
Zaidiza D A, Belaissaoui B, Rode S, Neveux T, Makhloufi C, Castel C, Roizard D, Favre E. Adiabatic modelling of CO2 capture by amine solvents using membrane contactors. Journal of Membrane Science, 2015, 493: 106–119
Google Scholar
Zaidiza D A, Wilson S G, Belaissaoui B, Rode S, Castel C, Roizard D, Favre E. Rigorous modelling of adiabatic multicomponent CO2 post-combustion capture using hollow fibre membrane contactors. Chemical Engineering Science, 2016, 145: 45–58
Google Scholar
Zhang L, Li J, Zhou L, Liu R, Wang X, Yang L. Fouling of impurities in desulfurized flue gas on hollow fiber membrane absorption for CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(29): 8002–8010
CAS
Google Scholar
Zhang L, Qu R, Sha Y, Wang X, Yang L. Membrane gas absorption for CO2 capture from flue gas containing fine particles and gaseous contaminants. International Journal of Greenhouse Gas Control, 2015, 33: 10–17
CAS
Google Scholar
Zhang L, Wang X, Yu R, Li J, Hu B, Yang L. Hollow fiber membrane separation process in the presence of gaseous and particle impurities for post-combustion CO2 capture. International Journal of Green Energy, 2017, 14(1): 15–23
CAS
Google Scholar
Kang G, Chan Z P, Saleh S B M, Cao Y. Removal of high concentration CO2 from natural gas using high pressure membrane contactors. International Journal of Greenhouse Gas Control, 2017, 60: 1–9
CAS
Google Scholar
Kim S H, Kim J K, Yeo J G, Yeo Y K. Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis. Chemical Engineering Research & Design, 2017, 117: 659–669
CAS
Google Scholar
Lee S, Binns M, Lee J H, Moon J H, Yeo J G, Yeo Y K, Lee Y M, Kim J K. Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: process modeling and experiments. Journal of Membrane Science, 2017, 541: 224–234
CAS
Google Scholar
Li H, Ding X, Zhang Y, Liu J. Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68
CAS
Google Scholar
Liu B, Zhou R, Bu N, Wang Q, Zhong S, Wang B, Hidetoshi K. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. Journal of Membrane Science, 2017, 524: 12–19
CAS
Google Scholar
Mirfendereski M, Mohammadi T. Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas-liquid contactors. Chemical and Biochemical Engineering Quarterly, 2017, 31(2): 139–144
CAS
Google Scholar
Rahmawati Y, Nurkhamidah S. Susianto, Listiyana N I, Putricahyani W. Application of dual membrane contactor for simultaneous CO2 removal using continues diethanolamine (DEA). In: AIP Conference Proceedings. AIP Publishing, 2017, 100009
Rudaini I A, Naim R, Abdullah S, Mokhtar N M, Jaafar J. PVDF-cloisite hollow fiber membrane for CO2 absorption via membrane contactor. Jurnal Teknologi, 2017, 79(1–2): 17–23
Google Scholar
Saidi M. Kinetic study and process model development of CO2 absorption using hollow fiber membrane contactor with promoted hot potassium carbonate. Journal of Environmental Chemical Engineering, 2017, 5(5): 4415–4430
CAS
Google Scholar
Saidi M. Mathematical modeling of CO2 absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation. Journal of Membrane Science, 2017, 524: 186–196
CAS
Google Scholar
Usman M, Dai Z, Hillestad M, Deng L. Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture. Chemical Engineering Research & Design, 2017, 123: 377–387
CAS
Google Scholar
Wang F, Kang G, Liu D, Li M, Cao Y. Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2135–2145
CAS
Google Scholar
Zhou F, Tien H N, Xu W L, Chen J T, Liu Q, Hicks E, Fathizadeh M, Li S, Yu M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nature Communications, 2017, 8(1): 2107
PubMed
PubMed Central
Google Scholar
Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation. Journal of Colloid and Interface Science, 2018, 510: 12–19
CAS
PubMed
Google Scholar
Ko D. Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO2 from coalbed methane. Journal of Membrane Science, 2018, 546: 258–269
CAS
Google Scholar
Pang H, Gong H, Du M, Shen Q, Chen Z. Effect of non-solvent additive concentration on CO2 absorption performance of poly-vinylidenefluoride hollow fiber membrane contactor. Separation and Purification Technology, 2018, 191: 38–47
CAS
Google Scholar
Fazaeli R, Razavi S M R, Najafabadi M S, Torkaman R, Hemmati A. Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes. Royal Society of Chemistry Advances, 2015, 5(46): 36787–36797
CAS
Google Scholar
Eslami S, Mousavi S M, Danesh S, Banazadeh H. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Advances in Engineering Software, 2011, 42(8): 612–620
Google Scholar
Marti A M, Wickramanayake W, Dahe G, Sekizkardes A, Bank T L, Hopkinson D P, Venna S R. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(7): 5678–5682
CAS
Google Scholar
Vu D Q, Koros W J, Miller S J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & Engineering Chemistry Research, 2002, 41(3): 367–380
CAS
Google Scholar
Wang Z, Fang M, Yu H, Ma Q, Luo Z. Modeling of CO2 stripping in a hollow fiber membrane contactor for CO2 capture. Energy & Fuels, 2013, 27(11): 6887–6898
CAS
Google Scholar
Lee J H, Lee J, Jo H J, Seong J G, Kim J S, Lee W H, Moon J, Lee D, Oh W J, Yeo J G, Lee Y M. Wet CO2/N2 permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 capture. Journal of Membrane Science, 2017, 539: 412–420
CAS
Google Scholar
Li S, Pyrzynski T J, Klinghoffer N B, Tamale T, Zhong Y, Aderhold J L, Zhou S J, Meyer H S, Ding Y, Bikson B. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527: 92–101
CAS
Google Scholar
Hwang S, Chi W S, Lee S J, Im S H, Kim J H, Kim J. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. Journal of Membrane Science, 2015, 480: 11–19
CAS
Google Scholar
Khan A L, Klaysom C, Gahlaut A, Li X, Vankelecom I F. SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations. Journal of Materials Chemistry, 2012, 22(37): 20057–20064
CAS
Google Scholar
Khan A L, Klaysom C, Gahlaut A, Vankelecom I F. Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. Journal of Membrane Science, 2013, 436: 145–153
CAS
Google Scholar
Li S, Fan C Q. High-flux SAPO-34 membrane for CO2/N2 separation. Industrial & Engineering Chemistry Research, 2010, 49(9): 4399–4404
CAS
Google Scholar
Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials & Interfaces, 2015, 7(9): 5528–5537
CAS
Google Scholar
Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. Journal of Membrane Science, 2015, 495: 72–80
CAS
Google Scholar
Li X, Ma L, Zhang H, Wang S, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B. Synergistic effect ofcombining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479: 1–10
Google Scholar
Lin R, Ge L, Liu S, Rudolph V, Zhu Z. Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(27): 14750–14757
CAS
Google Scholar
Loloei M, Omidkhah M, Moghadassi A, Amooghin A E. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. International Journal of Greenhouse Gas Control, 2015, 39: 225–235
CAS
Google Scholar
Mahmoudi A, Asghari M, Zargar V. CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 2015, 23: 238–242
CAS
Google Scholar
Moghadassi A, Rajabi Z, Hosseini S, Mohammadi M. Preparation and characterization of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membrane for CO2 separation. Separation Science and Technology, 2013, 48(8): 1261–1271
CAS
Google Scholar
Mohshim D F, Mukhtar H, Man Z. The effect of incorporating ionic liquid into polyethersulfone-SAPO-34 based mixed matrix membrane on CO2 gas separation performance. Separation and Purification Technology, 2014, 135: 252–258
CAS
Google Scholar
Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255
CAS
Google Scholar
Peydayesh M, Asarehpour S, Mohammadi T, Bakhtiari O. Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2013, 91(7): 1335–1342
CAS
Google Scholar
Rodenas T, Van Dalen M, García Pérez E, Serra Crespo P, Zornoza B, Kapteijn F, Gascon J. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53 (Al)@ PI. Advanced Functional Materials, 2014, 24(2): 249–256
CAS
Google Scholar
Rodenas T, Van Dalen M, Serra Crespo P, Kapteijn F, Gascon J. Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2014, 192: 35–42
CAS
Google Scholar
Roh D K, Kim S J, Chi W S, Kim J K, Kim J H. Dual-functionalized mesoporous TiO2 hollow nanospheres for improved CO2 separation membranes. Chemical Communications, 2014, 50(43): 5717–5720
CAS
PubMed
Google Scholar
Thompson J A, Vaughn J T, Brunelli N A, Koros W J, Jones C W, Nair S. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous and Mesoporous Materials, 2014, 192: 43–51
CAS
Google Scholar
Xin Q, Wu H, Jiang Z, Li Y, Wang S, Li Q, Li X, Lu X, Cao X, Yang J. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467: 23–35
CAS
Google Scholar
Xing R, Ho W W. Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 2011, 367(1–2): 91–102
CAS
Google Scholar
Yilmaz G, Keskin S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4 and H2 separations using molecular simulations. Industrial & Engineering Chemistry Research, 2012, 51(43): 14218–14228
CAS
Google Scholar
Zhang L, Hu Z, Jiang J. Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: a fully atomistic simulation study. Journal of Physical Chemistry C, 2012, 116(36): 19268–19277
CAS
Google Scholar
Zhao D, Ren J, Li H, Hua K, Deng M. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234
CAS
Google Scholar
Zhao H Y, Cao Y M, Ding X L, Zhou M Q, Liu J H, Yuan Q. Poly (ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO2. Journal of Membrane Science, 2008, 320(1–2): 179–184
CAS
Google Scholar
Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M A. Development and performance prediction of polyethersulfone-carbon molecular sieve mixed matrix membrane for CO2/CH4 separation. Chemical Engineering Transactions, 2015, 45: 1417–1422
Google Scholar
Rabiee H, Alsadat S M, Soltanieh M, Mousavi S A, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239
CAS
Google Scholar
Rezaei M, Ismail A F, Bakeri G, Hashemifard S, Matsuura T. Effect of general montmorillonite and cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption. Chemical Engineering Journal, 2015, 260: 875–885
CAS
Google Scholar
Seoane B, Coronas J, Gascon I, Benavides M E, Karvan O, Caro J, Kapteijn F, Gascon J. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chemical Society Reviews, 2015, 44(8): 2421–2454
CAS
PubMed
PubMed Central
Google Scholar
Sorribas S, Comesaña Gándara B, Lozano A E, Zornoza B, Téllez C, Coronas J. Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO2/CH4 gas separation. Royal Society of Chemistry Advances, 2015, 5(124): 102392–102398
CAS
Google Scholar
Alavi S A, Kargari A, Sanaeepur H, Karimi M. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations. Research on Chemical Intermediates, 2017, 43(5): 2959–2984
CAS
Google Scholar
Amooghin A E, Omidkhah M, Sanaeepur H, Kargari A. Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. Journal of Energy Chemistry, 2016, 25(3): 450–462
Google Scholar
Dong X, Liu Q, Huang A. Highly permselective MIL-68 (Al)/matrimid mixed matrix membranes for CO2/CH4 separation. Journal of Applied Polymer Science, 2016, 133(22): 43485
Google Scholar
Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S. Synthesis and characterization of poly(ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific Journal of Chemical Engineering, 2016, 11(4): 522–532
CAS
Google Scholar
Kang Z, Peng Y, Qian Y, Yuan D, Addicoat M A, Heine T, Hu Z, Tee L, Guo Z, Zhao D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chemistry of Materials, 2016, 28(5): 1277–1285
CAS
Google Scholar
Kertik A, Khan A L, Vankelecom I F. Mixed matrix membranes prepared from non-dried MOFs for CO2/CH4 separations. Royal Society of Chemistry Advances, 2016, 6(115): 114505–114512
CAS
Google Scholar
Kim J, Choi J, Soo Kang Y, Won J. Matrix effect ofmixed-matrix membrane containing CO2-selective MOFs. Journal of Applied Polymer Science, 2016, 133(1): n/a
Google Scholar
Kim J, Fu Q, Scofield J M, Kentish S E, Qiao G G. Ultra-thin film composite mixed matrix membranes incorporating iron (III)-dopamine nanoparticles for CO2 separation. Nanoscale, 2016, 8(15): 8312–8323
CAS
PubMed
Google Scholar
Kim J, Fu Q, Xie K, Scofield J M, Kentish S E, Qiao G G. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515: 54–62
CAS
Google Scholar
Kim S J, Chi W S, Jeon H, Kim J H, Patel R. Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture. Journal of Membrane Science, 2016, 508: 62–72
CAS
Google Scholar
Koolivand H, Sharif A, Chehrazi E, Kashani M R, Paran S M R. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO2/CH4 separation: a comparison between glassy and rubbery polymer matrices. Polymer Science, Series A, 2016, 58(5): 801–809
CAS
Google Scholar
Xin Q, Li Z, Li C, Wang S, Jiang Z, Wu H, Zhang Y, Yang J, Cao X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6629–6641
CAS
Google Scholar
Brunetti A, Cersosimo M, Kim J S, Dong G, Fontananova E, Lee Y M, Drioli E, Barbieri G. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26
CAS
Google Scholar
Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
CAS
Google Scholar
Galaleldin S, Mannan H, Mukhtar H. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 130017
Google Scholar
Jusoh N, Yeong Y F, Lau K K, Shariff A M. Transport properties of mixed matrix membranes encompassing zeolitic imidazolate framework 8 (ZIF-8) nanofiller and 6FDA-durene polymer: optimization of process variables for the separation of CO2 from CH4. Journal of Cleaner Production, 2017, 149: 80–95
CAS
Google Scholar
Khalilinejad I, Kargari A, Sanaeepur H. Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 2017, 71(4): 803–818
CAS
Google Scholar
Khosravi T, Omidkhah M, Kaliaguine S, Rodrigue D. Amine-functionalized CuBTC/poly (ether-b-amide-6)(Pebax® MH 1657) mixed matrix membranes for CO2/CH4 separation. Canadian Journal of Chemical Engineering, 2017, 95(10): 2024–2033
CAS
Google Scholar
Krea M, Roizard D, Favre E. Copoly (alkyl ether imide) membranes as promising candidates for CO2 capture applications. Separation and Purification Technology, 2016, 161: 53–60
CAS
Google Scholar
Liu Y, Li X, Qin Y, Guo R, Zhang J. Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 2017, 134(10): 44564
Google Scholar
Martin Gil V, López A, Hrabanek P, Mallada R, Vankelecom I, Fila V. Study of different titanosilicate (TS-1 and ETS-10)as fillers for mixed matrix membranes for CO2/CH4 gas separation applications. Journal of Membrane Science, 2017, 523: 24–35
CAS
Google Scholar
Nematollahi M H, Dehaghani A H S, Abedini R. CO2/CH4 separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles. Korean Journal of Chemical Engineering, 2016, 33(2): 657–665
CAS
Google Scholar
Nematollahi M H, Dehaghani A H S, Pirouzfar V, Akhondi E. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2. Macro-molecular Research, 2016, 24(9): 782–792
CAS
Google Scholar
Nguyen T H, Gong H, Lee S S, Bae T H. Amine-appended hierarchical Ca—a zeolite for enhancing CO2/CH4 selectivity of mixed-matrix membranes. ChemPhysChem, 2016, 17(20): 3165–3169
CAS
PubMed
Google Scholar
Nordin NAHM, Ismail A F, Misdan N, Nazri NAM. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. in AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020091
Google Scholar
Park C H, Lee J H, Jang E, Lee K B, Kim J H. MgCO3-crystal-containing mixed matrix membranes with enhanced CO2 perms-electivity. Chemical Engineering Journal, 2017, 307: 503–512
CAS
Google Scholar
Quan S, Li S W, Xiao Y C, Shao L. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. International Journal of Greenhouse Gas Control, 2017, 56: 22–29
CAS
Google Scholar
Rahmani M, Kazemi A, Talebnia F. Matrimid mixed matrix membranes for enhanced CO2/CH4 separation. Journal of Polymer Engineering, 2016, 36(5): 499–511
CAS
Google Scholar
Sanaeepur H, Kargari A, Nasernejad B, Amooghin A E, Omidkhah M. A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 403–413
CAS
Google Scholar
Sánchez Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53
Google Scholar
Sánchez Laínez J, Zornoza B, Téllez C, Coronas J. On the chemical filler-polymer interaction of nano-and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(37): 14334–14341
Google Scholar
Shamsabadi A A, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(8): 4011–4025
CAS
Google Scholar
Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
CAS
Google Scholar
Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(8): 2843–2852
CAS
Google Scholar
Shen Y, Wang H, Zhang X, Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378
CAS
Google Scholar
Shin H, Chi W S, Bae S, Kim J H, Kim J. High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53: 127–133
CAS
Google Scholar
Sumer Z, Keskin S. Computational screening of MOF-based mixed matrix membranes for CO2/N2 Separations. Journal of Nanomaterials, 2016, 2016: 1–12
Google Scholar
Tseng H H, Chuang H W, Zhuang G L, Lai W H, Wey M Y. Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. International Journal of Hydrogen Energy, 2017, 42(16): 11379–11391
CAS
Google Scholar
Waheed N, Mushtaq A, Tabassum S, Gilani M A, Ilyas A, Ashraf F, Jamal Y, Bilad M R, Khan A U, Khan A L. Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology, 2016, 170: 122–129
CAS
Google Scholar
Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977
CAS
Google Scholar
Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75
CAS
Google Scholar
Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508: 84–93
CAS
Google Scholar
Xin Q, Zhang Y, Shi Y, Ye H, Lin L, Ding X, Zhang Y, Wu H, Jiang Z. Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514: 73–85
CAS
Google Scholar
Zhang H, Guo R, Hou J, Wei Z, Li X. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation. ACS Applied Materials & Interfaces, 2016, 8(42): 29044–29051
CAS
Google Scholar
Zhao D, Ren J, Wang Y, Qiu Y, Li H, Hua K, Li X, Ji J, Deng M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. Journal of Membrane Science, 2017, 521: 104–113
CAS
Google Scholar
Li Y, Chung T S. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 2010, 35(19): 10560–10568
CAS
Google Scholar
Ebrahimi S, Mollaiy Berneti S, Asadi H, Peydayesh M, Akhlaghian F, Mohammadi T. PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chemical Engineering Research & Design, 2016, 109: 647–656
CAS
Google Scholar
Xiong L, Gu S, Jensen K O, Yan Y S. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation. ChemSusChem, 2014, 7(1): 114–116
CAS
PubMed
Google Scholar
Zhou T, Luo L, Hu S, Wang S, Zhang R, Wu H, Jiang Z, Wang B, Yang J. Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2015, 489: 1–10
CAS
Google Scholar
Cui Z, DeMontigny D. Part 7: a review of CO2 capture using hollow fiber membrane contactors. Carbon Management, 2013, 4(1): 69–89
CAS
Google Scholar
Ahmad M Z, Navarro M, Lhotka M, Zornoza B, Téllez C, Fila V, Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474
Google Scholar
Cao L, Tao K, Huang A, Kong C, Chen L. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chemical Communications, 2013, 49(76): 851–8515
Google Scholar
Dong L, Sun Y, Zhang C, Han D, Bai Y, Chen M. Efficient CO2 capture by metallo-supramolecular polymers as fillers to fabricate a polymeric blend membrane. Royal Society of Chemistry Advances, 2015, 5(83): 67658–67661
CAS
Google Scholar
Erucar I, Keskin S. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations. Industrial & Engineering Chemistry Research, 2011, 50(22): 12606–12616
CAS
Google Scholar
Huang A, Chen Y, Liu Q, Wang N, Jiang J, Caro J. Synthesis of highly hydrophobic and permselective metal-organic framework Zn (BDC)(TED) 0.5 membranes for H2/CO2 separation. Journal of Membrane Science, 2014, 454: 126–132
CAS
Google Scholar
Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes. Journal of Physical Chemistry C, 2016, 120(45): 2606–26066
Google Scholar
Monteiro B, Nabais A R, Almeida Paz F A, Cabrita L, Branco L C, Marrucho I M, Neves L A, Pereira C C. Membranes with a low loading of metal-organic framework-supported ionic liquids for CO2/N2 separation in CO2 capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162
CAS
Google Scholar
Morris C G, Jacques N M, Godfrey H G, Mitra T, Fritsch D, Lu Z, Murray C A, Potter J, Cobb T M, Yuan F, Tang C C, Yang S, Schröder M. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Chemical Science (Cambridge), 2017, 8(4): 3239–3248
CAS
Google Scholar
Nordin NAHM, Racha S M, Matsuura T, Misdan N, Sani N A A, Ismail A F, Mustafa A. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120
Google Scholar
Rui Z, James J B, Kasik A, Lin Y. Metal-organic framework membrane process for high purity CO2 production. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(11): 3836–3841
CAS
Google Scholar
Watanabe T, Keskin S, Nair S, Sholl D S. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu (hfipbb)(H2 hfipbb) 0.5. Physical Chemistry Chemical Physics, 2009, 11(48): 11389–11394
CAS
PubMed
Google Scholar
Wu D, Maurin G, Yang Q, Serre C, Jobic H, Zhong C. Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(6): 1657–1661
CAS
Google Scholar
Yin H, Wang J, Xie Z, Yang J, Bai J, Lu J, Zhang Y, Yin D, Lin J Y. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation. Chemical Communications, 2014, 50(28): 3699–3701
CAS
PubMed
Google Scholar
Kelman S, Lin H, Sanders E S, Freeman B D. CO2/C2H6 separation using solubility selective membranes. Journal of Membrane Science, 2007, 305(1–2): 57–68
CAS
Google Scholar
Low B T, Xiao Y, Chung T S, Liu Y. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules, 2008, 41(4): 1297–1309
CAS
Google Scholar
Modigell M, Schumacher M, Teplyakov V V, Zenkevich V B. A membrane contactor for efficient CO2 removal in biohydrogen production. Desalination, 2008, 224(1–3): 186–190
CAS
Google Scholar
Yave W, Car A, Wind J, Peinemann K V. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology, 2010, 21(39): 395301
PubMed
Google Scholar
Zhang Y, Wang Z, Wang S. Synthesis and characteristics of novel fixed carrier membrane for CO2 separation. Chemistry Letters, 2002, 31(4): 430–431
Google Scholar
Khan A L, Li X, Vankelecom I F. Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes. Journal of Membrane Science, 2011, 372(1–2): 87–96
CAS
Google Scholar
Kim T J, Uddin M W, Sandru M, Hägg M B. The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes. Energy Procedia, 2011, 4: 737–744
CAS
Google Scholar
Zhang L, Xiao Y, Chung T S, Jiang J. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: a combination of experiment and simulation study. Polymer, 2010, 51(19): 4439–4447
CAS
Google Scholar
Chang J, Kang S W. CO2 separation through poly(vinylidene fluoride-co-hexafluoropropylene) membrane by selective ion channel formed by tetrafluoroboric acid. Chemical Engineering Journal, 2016, 306: 1189–1192
CAS
Google Scholar
Fu X, Li X, Guo R, Zhang J, Cao X. Block copolymer membranes based on polyetheramine and methyl-containing polyisophthalamides designed for efficient CO2 separation. High Performance Polymers, 2018, 30(9): 1064–1074
CAS
Google Scholar
Ghadiri M, Marjani A, Shirazian S. Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 13: 1–8
CAS
Google Scholar
Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222
CAS
Google Scholar
Kwisnek L, Heinz S, Wiggins J S, Nazarenko S. Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation. Journal of Membrane Science, 2011, 369(1–2): 429–436
CAS
Google Scholar
Lee J H, Jung J P, Jang E, Lee K B, Hwang Y J, Min B K, Kim J H. PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. Journal of Membrane Science, 2016, 518: 21–30
CAS
Google Scholar
Li Y, Xin Q, Wang S, Tian Z, Wu H, Liu Y, Jiang Z. Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO2 capture. Chemical Communications, 2015, 51(10): 1901–1904
CAS
PubMed
Google Scholar
Lindqvist K, Roussanaly S, Anantharaman R. Multi-stage membrane processes for CO2 capture from cement industry. Energy Procedia, 2014, 63: 6476–6483
CAS
Google Scholar
Ma Z, Qiao Z, Wang Z, Cao X, He Y, Wang J, Wang S. CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups. Royal Society of Chemistry Advances, 2014, 4(41): 21313–21317
CAS
Google Scholar
Mondal A, Barooah M, Mandal B. Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Greenhouse Gas Control, 2015, 39: 27–28
CAS
Google Scholar
Mondal A, Mandal B. Synthesis and characterization of cross-linked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxy-methyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. Journal of Membrane Science, 2013, 446: 383–394
CAS
Google Scholar
Ricci E, Minelli M, De Angelis M G. A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO2 capture: the case of CO2/CH4 mixture in Matrimid®. Journal of Membrane Science, 2017, 539: 88–100
CAS
Google Scholar
Liu S, Liu G, Wei W, Xiangli F, Jin W. Ceramic supported PDMS and PEGDA composite membranes for CO2 separation. Chinese Journal of Chemical Engineering, 2013, 21(4): 348–356
CAS
Google Scholar
Sandru M, Kim T J, Capala W, Huijbers M, Hägg M B. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480
CAS
Google Scholar
Tseng H H, Itta A K, Weng T H, Li Y L. SBA-15/CMS composite membrane for H2 purification and CO2 capture: effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180: 270–279
CAS
Google Scholar
Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Guiver M D. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 2016, 9(6): 1863–1890
CAS
Google Scholar
Zainab G, Iqbal N, Babar A A, Huang C, Wang X, Yu J, Ding B. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 2017, 6: 41–47
Google Scholar
Kim K J, Park S H, So W W, Ahn D J, Moon S J. CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. Journal of Membrane Science, 2003, 211(1): 41–49
CAS
Google Scholar
Okabe K, Nakamura M, Mano H, Teramoto M, Yamada K. Separation and recovery of CO2 by membrane/absorption hybrid method. In: Proceedings of the Eighth Intenational Conference on Greenhouse Gas Control Technologies. Amsterdam: Elsevier, 2006, 409–412
Google Scholar
Francisco G J, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. Journal of Membrane Science, 2007, 303(1–2): 54–63
CAS
Google Scholar
Sridhar S, Suryamurali R, Smitha B, Aminabhavi T. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 297(1–3): 267–274
CAS
Google Scholar
Kai T, Kouketsu T, Duan S, Kazama S, Yamada K. Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas. Separation and Purification Technology, 2008, 63(3): 524–530
CAS
Google Scholar
Kosuri M R, Koros W J. Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1–2): 65–72
CAS
Google Scholar
Kosuri M R, Koros W J. Asymmetric hollow fiber membranes for separation of CO2 from hydrocarbons and fluorocarbons at high-pressure conditions relevant to C2F4 polymerization. Industrial & Engineering Chemistry Research, 2009, 48(23): 10577–10583
CAS
Google Scholar
Safari M, Ghanizadeh A, Montazer Rahmati M M. Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. International Journal of Greenhouse Gas Control, 2009, 3(1): 3–10
CAS
Google Scholar
Xing R, Ho W W. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 654–662
CAS
Google Scholar
Yave W, Car A, Funari S S, Nunes S P, Peinemann K V. CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 2009, 43(1): 326–333
Google Scholar
Cong H, Yu B. Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Industrial & Engineering Chemistry Research, 2010, 49(19): 9363–9369
CAS
Google Scholar
Park H B, Han S H, Jung C H, Lee Y M, Hill A J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24
CAS
Google Scholar
Reijerkerk S R, Knoef M H, Nijmeijer K, Wessling M. Poly (ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. Journal of Membrane Science, 2010, 352(1–2): 126–135
CAS
Google Scholar
Yave W, Szymczyk A, Yave N, Roslaniec Z. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: a new membrane material for CO2 separation. Journal of Membrane Science, 2010, 362(1–2): 407–416
CAS
Google Scholar
Yu X, Wang Z, Wei Z, Yuan S, Zhao J, Wang J, Wang S. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1–2): 265–278
CAS
Google Scholar
Khan A L, Li X, Vankelecom I F. SPEEK/Matrimid blend membranes for CO2 separation. Journal of Membrane Science, 2011, 380(1–2): 55–62
CAS
Google Scholar
Peters L, Hussain A, Follmann M, Melin T, Hägg M B. CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chemical Engineering Journal, 2011, 172(2–3): 952–960
CAS
Google Scholar
Reijerkerk S R, Jordana R, Nijmeijer K, Wessling M. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 2011, 5(1): 26–36
CAS
Google Scholar
Reijerkerk S R, Wessling M, Nijmeijer K. Pushing the limits of block copolymer membranes for CO2 separation. Journal of Membrane Science, 2011, 378(1–2): 479–484
CAS
Google Scholar
Sanaeepur H, Amooghin A E, Moghadassi A, Kargari A. Preparation and characterization of acrylonitrile-butadiene-styrene/poly(vinyl acetate) membrane for CO2 removal. Separation and Purification Technology, 2011, 80(3): 499–508
CAS
Google Scholar
Spadaccini C M, Mukerjee E V, Letts S A, Maiti A, O’Brien K C. Ultrathin polymer membranes for high throughput CO2 capture. Energy Procedia, 2011, 4: 731–736
CAS
Google Scholar
Xia J, Liu S, Chung T S. Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes. Macromolecules, 2011, 44(19): 7727–7736
CAS
Google Scholar
Ahmad F, Lau K K, Shariff A M, Murshid G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers & Chemical Engineering, 2012, 36: 119–128
CAS
Google Scholar
Bengtson G, Neumann S, Filiz V. Optimization of PIM-membranes for separation of CO2. Procedia Engineering, 2012, 44: 796–798
Google Scholar
Han S H, Kwon H J, Kim K Y, Seong J G, Park C H, Kim S, Doherty C M, Thornton A W, Hill A J, Lozano A E, Berchtold K A, Lee Y M. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Physical Chemistry Chemical Physics, 2012, 14(13): 4365–4373
CAS
PubMed
Google Scholar
Kim S, Lee Y M. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation, in nanotechnology for sustainable development. New York: Springer, 2012, 265–275
Google Scholar
Uddin M W, Hägg M B. Natural gas sweetening—the effect on CO2-CH4 separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. Journal of Membrane Science, 2012, 423: 143–149
Google Scholar
Hu T, Dong G, Li H, Chen V. Improved CO2 separation performance with additives of PEG and PEG-PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide) membranes. Journal of Membrane Science, 2013, 432: 13–24
CAS
Google Scholar
Kai T, Taniguchi I, Duan S, Chowdhury F A, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S. Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia, 2013, 37: 961–968
CAS
Google Scholar
Kim T J, Vrálstad H, Sandru M, Hägg M B. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. Journal of Membrane Science, 2013, 428: 218–224
CAS
Google Scholar
Li S, Wang Z, Zhang C, Wang M, Yuan F, Wang J, Wang S. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131
CAS
Google Scholar
Nasir R, Mukhtar H, Man Z, Mohshim D F. Synthesis, characterization and performance study of newly developed amine polymeric membrane (APM) for carbon dioxide (CO2) removal. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear. Materials and Metallurgical Engineering, 2013, 7(9): 670–673
Google Scholar
Rahman M M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan M M, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297
CAS
Google Scholar
Wang M, Wang Z, Li S, Zhang C, Wang J, Wang S. A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551
CAS
Google Scholar
Ahmadpour E, Shamsabadi A A, Behbahani R M, Aghajani M, Kargari A. Study of CO2 separation with PVC/Pebax composite membrane. Journal of Natural Gas Science and Engineering, 2014, 21: 518–523
CAS
Google Scholar
Constantinou A, Barrass S, Gavriilidis A. CO2 absorption in polytetrafluoroethylene membrane microstructured contactor using aqueous solutions of amines. Industrial & Engineering Chemistry Research, 2014, 53(22): 9236–9242
CAS
Google Scholar
Hussain A, Nasir H, Ahsan M. Process design analyses of CO2 capture from natural gas by polymer membrane. Journal of the Chemical Society of Pakistan, 2014, 36(3): 411–421
CAS
Google Scholar
Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M, Kniep J, Merkel T C, Wu T, Lambrecht R C. CO2-selective membranes for hydrogen production and CO2 capture-Part I: Membrane development. Journal of Membrane Science, 2014, 457: 149–161
CAS
Google Scholar
Mondal A, Mandal B. Novel CO2-selective cross-linked poly(vinyl alcohol)/polyvinylpyrrolidone blend membrane containing amine carrier for CO2-N2 separation: synthesis, characterization, and gas permeation study. Industrial & Engineering Chemistry Research, 2014, 53(51): 19736–19746
CAS
Google Scholar
Mondal A, Mandal B. CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 2014, 460: 126–138
CAS
Google Scholar
Nabian N, Ghoreyshi A, Rahimpour A, Shakeri M. Effect of polymer concentration on the structure and performance of polysulfone flat membrane for CO2 absorption in membrane contactor. Iranian Journal of Chemical Engineering, 2014, 11(2): 79
Google Scholar
Salih A A, Yi C, Peng H, Yang B, Yin L, Wang W. Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118
CAS
Google Scholar
Wang L, Li Y, Li S, Ji P, Jiang C. Preparation of composite poly (ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725
Google Scholar
Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70
CAS
Google Scholar
Scholes C A, Ribeiro C P, Kentish S E, Freeman B D. Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation. Separation and Purification Technology, 2014, 124: 134–140
CAS
Google Scholar
Wang Z, Fang M, Ma Q, Zhao Z, Wang T, Luo Z. Membrane stripping technology for CO2 desorption from CO2-rich absorbents with low energy consumption. Energy Procedia, 2014, 63: 765–772
CAS
Google Scholar
Zhou J, Tran M M, Haldeman A T, Jin J, Wagener E H, Husson S M. Perfluorocyclobutyl polymer thin-film composite membranes for CO2 separations. Journal of Membrane Science, 2014, 450: 478–486
CAS
Google Scholar
Gilassi S, Rahmanian N. Mathematical modelling and numerical simulation of CO2/CH4 separation in a polymeric membrane. Applied Mathematical Modelling, 2015, 39(21): 6599–6611
Google Scholar
Khalilinejad I, Sanaeepur H, Kargari A. Preparation of poly (ether-6-block amide)/PVC thin film composite membrane for CO2 separation: effect of top layer thickness and operating parameters. Journal of Membrane Science and Research, 2015, 1(3): 124–129
Google Scholar
Kim S J, Jeon H, Kim D J, Kim J H. High-performance polymer membranes with multi-functional amphiphilic micelles for CO2 capture. ChemSusChem, 2015, 8(22): 3783–3792
CAS
PubMed
Google Scholar
Li P, Wang Z, Liu Y, Zhao S, Wang J, Wang S. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances. Journal of Membrane Science, 2015, 476: 243–255
CAS
Google Scholar
Li P, Wang Z, Li W, Liu Y, Wang J, Wang S. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(28): 15481–15493
CAS
Google Scholar
Liao J, Wang Z, Gao C, Wang M, Yan K, Xie X, Zhao S, Wang J, Wang S. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16746–16761
CAS
Google Scholar
Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M Z A. Effect of fixed carbon molecular sieve (CMS) loading and various diethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO2/CH4 separation. Royal Society of Chemistry Advances, 2015, 5(75): 60814–60822
CAS
Google Scholar
Park C H, Lee J H, Jung J P, Jung B, Kim J H. A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. Journal of Membrane Science, 2015, 492: 452–460
CAS
Google Scholar
Park S, Lee A S, Do Y S, Hwang S S, Lee Y M, Lee J H, Lee J S. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO2 removal. Chemical Communications, 2015, 51(83): 15308–15311
CAS
PubMed
Google Scholar
Scofield J M, Gurr P A, Kim J, Fu Q, Halim A, Kentish S E, Qiao G G. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)-poly(ethylene glycol) copolymer additives for CO2 separation. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(12): 1500–1511
CAS
Google Scholar
Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. Journal of Membrane Science, 2015, 475: 175–183
CAS
Google Scholar
Adewole J K, Ahmad A L. Process modeling and optimization studies of high pressure membrane separation of CO2 from natural gas. Korean Journal of Chemical Engineering, 2016, 33(10): 2998–3010
CAS
Google Scholar
Chen Y, Ho W W. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 2016, 514: 376–384
CAS
Google Scholar
Karamouz F, Maghsoudi H, Yegani R. Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2016, 35: 980–985
CAS
Google Scholar
Mosleh S, Mozdianfard M, Hemmati M, Khanbabaei G. Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation. Journal of Polymer Research, 2016, 23(6): 120
Google Scholar
Scofield J M, Gurr P A, Kim J, Fu Q, Kentish S E, Qiao G G. Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499: 191–200
CAS
Google Scholar
Solimando X, Lherbier C, Babin J, Arnal Herault C, Romero E, Acherar S, Jamart Gregoire B, Barth D, Roizard D, Jonquieres A. Pseudopeptide bioconjugate additives for CO2 separation membranes. Polymer International, 2016, 65(12): 1464–1473
Google Scholar
Wu D, Zhao L, Vakharia V K, Salim W, Ho W W. Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation: from lab to pilot scale. Journal of Membrane Science, 2016, 510: 58–71
CAS
Google Scholar
Azizi N, Arzani M, Mahdavi H R, Mohammadi T. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470
CAS
Google Scholar
Azizi N, Mohammadi T, Behbahani R M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51
CAS
Google Scholar
Azizi N, Mohammadi T, Behbahani R M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465
Google Scholar
Isfahani A P, Sadeghi M, Wakimoto K, Gibbons A H, Bagheri R, Sivaniah E, Ghalei B. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. Journal of Membrane Science, 2017, 542: 143–149
CAS
Google Scholar
Jung J P, Park C H, Lee J H, Bae Y S, Kim J H. Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313: 1615–1622
CAS
Google Scholar
Prasad B, Mandal B. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane. Journal of Applied Polymer Science, 2017, 134(34): 45206
Google Scholar
Taniguchi I, Wada N, Kinugasa K, Higa M. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine). Open Physics, 2017, 15(1): 662–670
CAS
Google Scholar
Tong Z, Ho W W. New sterically hindered polyvinylamine membranes for CO2 separation and capture. Journal of Membrane Science, 2017, 543: 202–211
CAS
Google Scholar
Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Industrial & Engineering Chemistry Research, 2007, 46(21): 6989–6997
CAS
Google Scholar
Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. Journal of Membrane Science, 2010, 350(1–2): 117–123
CAS
Google Scholar
Junaidi M, Khoo C, Leo C, Ahmad A. The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous and Mesoporous Materials, 2014, 192: 52–59
CAS
Google Scholar
Kim J, Abouelnasr M, Lin L C, Smit B. Large-scale screening of zeolite structures for CO2 membrane separations. Journal of the American Chemical Society, 2013, 135(20): 7545–7552
CAS
PubMed
Google Scholar
Korelskiy D, Grahn M, Ye P, Zhou M, Hedlund J. A study of CO2/CO separation by sub-micron b-oriented MFI membranes. Royal Society of ChemistryAdvances, 2016, 6(70): 65475–65482
CAS
Google Scholar
Kosinov N, Auffret C, Gücüyener C, Szyja B M, Gascon J, Kapteijn F, Hensen E J. High flux high-silica SSZ-13 membrane for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 13083–13092
CAS
Google Scholar
Lai L S, Yeong Y F, Lau K K, Shariff A M. Single and binary CO2/CH4 separation of a zeolitic imidazolate framework-8 membrane. Chemical Engineering & Technology, 2017, 40(6): 1031–1042
CAS
Google Scholar
Li X, Remias J E, Neathery J K, Liu K. Liu K. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. Journal of Membrane Science, 2011, 366(1–2): 220–228
CAS
Google Scholar
Maghsoudi H, Soltanieh M. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. Journal of Membrane Science, 2014, 470: 159–165
CAS
Google Scholar
Mizukami K, Takaba H, Kobayashi Y, Oumi Y, Belosludov R V, Takami S, Kubo M, Miyamoto A. Molecular dynamics calculations of CO2/N2 mixture through the NaY type zeolite membrane. Journal of Membrane Science, 2001, 188(1): 21–28
CAS
Google Scholar
Sandström L, Sjöberg E, Hedlund J. Very high flux MFI membrane for CO2 separation. Journal of Membrane Science, 2011, 380(1–2): 232–240
Google Scholar
Sun C, Srivastava D J, Grandinetti P J, Dutta P K. Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Microporous and Mesoporous Materials, 2016, 230: 208–216
CAS
Google Scholar
Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Aminofunctionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Advanced Materials, 2017, 29(32): 1606999
Google Scholar
Yin X, Chu N, Yang J, Wang J, Li Z. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. International Journal of Greenhouse Gas Control, 2013, 15: 55–64
CAS
Google Scholar
Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J. A uniformly oriented MFI membrane for improved CO2 separation. Angewandte Chemie International Edition, 2014, 53(13): 3492–3495
CAS
PubMed
Google Scholar
Kangas J, Sandström L, Malinen I, Hedlund J, Tanskanen J. Maxwell-Stefan modeling of the separation of H2 and CO2 at high pressure in an MFI membrane. Journal of Membrane Science, 2013, 435: 186–206
CAS
Google Scholar
Lee H, Park S C, Roh J S, Moon G H, Shin J E, Kang Y S, Park H B. Metal-organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22500–22505
CAS
Google Scholar
An W, Swenson P, Wu L, Waller T, Ku A, Kuznicki S M. Selective separation of hydrogen from C1/C2 hydrocarbons and CO2 through dense natural zeolite membranes. Journal of Membrane Science, 2011, 369(1–2): 414–419
CAS
Google Scholar
Banihashemi F, Pakizeh M, Ahmadpour A. CO2 separation using PDMS/ZSM-5 zeolite composite membrane. Separation and Purification Technology, 2011, 79(3): 293–302
CAS
Google Scholar
Chew T L, Ahmad A L, Bhatia S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chemical Engineering Journal, 2011, 171(3): 1053–1059
CAS
Google Scholar
Hao L, Li P, Yang T, Chung T S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231
CAS
Google Scholar
Kwon W T, Kim S R, Kim E B, Bae S Y, Kim Y. H2/CO2 gas separation characteristic of zeolite membrane at high temperature. In: Advanced Materials Research. Zürich, Switzerland: Trans Tech Publications, Ltd., 2007, 267–270
Google Scholar
Lai L S, Yeong Y F, Lau K K, Shariff A M. Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(2): 420–431
CAS
Google Scholar
Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1–2): 36–40
CAS
Google Scholar
Ohta Y, Takaba H, Nakao S I. A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO2/N2 separation. Microporous and Mesoporous Materials, 2007, 101(1–2): 319–323
CAS
Google Scholar
Song Z, Qiu F, Zaia E W, Wang Z, Kunz M, Guo J, Brady M, Mi B, Urban J J. Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Letters, 2017, 17(11): 6752–6758
CAS
PubMed
Google Scholar
Tzialla O, Veziri C, Papatryfon X, Beltsios K, Labropoulos A, Iliev B, Adamova G, Schubert T, Kroon M, Francisco M, Zubeir L F, Romanos G E, Karanikolos G N. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440
CAS
Google Scholar
Ramsay J, Kallus S. Zeolite membranes. In: Membrane Science and Technology. Vol 6. Amsterdam: Elsevier, 2000, 373–395
Google Scholar
Fan T, Xie W, Ji X, Liu C, Feng X, Lu X. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521
CAS
Google Scholar
Hu L, Cheng J, Li Y, Liu J, Zhang L, Zhou J, Cen K. Composites of ionic liquid and amine-modified SAPO-34 improve CO2 separation of CO2-selective polymer membranes. Applied Surface Science, 2017, 410: 249–258
CAS
Google Scholar
Iarikov D, Hacarlioglu P, Oyama S. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chemical Engineering Journal, 2011, 166(1): 401–406
CAS
Google Scholar
Karousos D S, Labropoulos A I, Sapalidis A, Kanellopoulos N K, Iliev B, Schubert T J, Romanos G E. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chemical Engineering Journal, 2017, 313: 777–790
CAS
Google Scholar
Karunakaran M, Villalobos L F, Kumar M, Shevate R, Akhtar F H, Peinemann K V. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(2): 649–656
CAS
Google Scholar
Li P, Paul D R, Chung T S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14(4): 1052–1063
CAS
Google Scholar
Li P, Pramoda K, Chung T S. CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Industrial & Engineering Chemistry Research, 2011, 50(15): 9344–9353
CAS
Google Scholar
Li Y, Rui Z, Xia C, Anderson M, Lin Y. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today, 2009, 148(3–4): 303–309
CAS
Google Scholar
Liu Z, Liu C, Li L, Qin W, Xu A. CO2 separation by supported ionic liquid membranes and prediction of separation performance. International Journal of Greenhouse Gas Control, 2016, 53: 79–84
CAS
Google Scholar
Lu J G, Ge H, Chen Y, Ren R T, Xu Y, Zhao Y X, Zhao X, Qian H. CO2 capture using a functional protic ionic liquid by membrane absorption. Journal of the Energy Institute, 2017, 90(6): 933–940
CAS
Google Scholar
Lu J G, Lu C T, Chen Y, Gao L, Zhao X, Zhang H, Xu Z W. CO2 capture by membrane absorption coupling process: application of ionic liquids. Applied Energy, 2014, 115: 573–581
CAS
Google Scholar
Lu S C, Khan A L, Vankelecom I F. Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features. Journal of Membrane Science, 2016, 518: 10–20
CAS
Google Scholar
Mannan H, Mohshim D, Mukhtar H, Murugesan T, Man Z, Bustam M. Synthesis, characterization and CO2 separation performance of polyether sulfone/[EMIM][Tf2N] ionic liquid-polymeric membranes (ILPMs). Journal of Industrial and Engineering Chemistry, 2017, 54: 98–106
CAS
Google Scholar
Ramli N A, Hashim N A, Aroua M K. Prediction of CO2/O2 absorption selectivity using supported ionic liquid membranes (SILMs) for gas-liquid membrane contactor. Chemical Engineering Communications, 2018, 205(3): 295–310
CAS
Google Scholar
Tomé L C, Patinha D J, Freire C S, Rebelo L P N, Marrucho I M. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. Royal Society of Chemistry Advances, 2013, 3(30): 12220–12229
Google Scholar
Ur Rehman R, Rafiq S, Muhammad N, Khan A L, Ur Rehman A, TingTing L, Saeed M, Jamil F, Ghauri M, Gu X. Development of ethanolamine-based ionic liquid membranes for efficient CO2/CH4 separation. Journal of Applied Polymer Science, 2017, 134(44): 45395
Google Scholar
Yoon K W, Kim H, Kang Y S, Kang S W. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance. Chemical Engineering Journal, 2017, 320: 50–54
CAS
Google Scholar
Zhang X M, Tu Z H, Li H, Li L, Wu Y T, Hu X B. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO2. Journal of Membrane Science, 2017, 527: 60–67
CAS
Google Scholar
Chen H, Kovvali A, Sirkar K. Selective CO2 Separation from CO2-N2 mixtures by immobilized glycine-Na-glycerol membranes. Industrial & Engineering Chemistry Research, 2000, 39(7): 2447–2458
CAS
Google Scholar
Ilyas A, Muhammad N, Gilani M A, Ayub K, Vankelecom I F, Khan A L. Supported protic ionic liquid membrane based on 3-(trimethoxysilyl) propan-1-aminium acetate for the highly selective separation of CO2. Journal of Membrane Science, 2017, 543: 301–309
CAS
Google Scholar
Ranjbaran F, Kamio E, Matsuyama H. Ion gel membrane with tunable inorganic/organic composite network for CO2 separation. Industrial & Engineering Chemistry Research, 2017, 56(44): 12763–12772
CAS
Google Scholar
Jindaratsamee P, Shimoyama Y, Ito A. Amine/glycol liquid membranes for CO2 recovery form air. Journal of Membrane Science, 2011, 385: 171–176
Google Scholar
Hussain A. Three stage membrane process for CO2 capture from natural gas. AA, 2017, 50: 1
Google Scholar
Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y. Separation of gaseous mixtures of CO2 and CH4 using a composite microporous glass membrane on ceramic tubing. Journal of Membrane Science, 1988, 39(3): 301–314
CAS
Google Scholar
Saha S, Chakma A. Separation of CO2 from gas mixtures with liquid membranes. Energy Conversion and Management, 1992, 33(5–8): 413–420
CAS
Google Scholar
Xu L, Zhang L, Chen H. Study on CO2 removal in air by hydrogel membranes. Desalination, 2002, 148(1–3): 309–313
CAS
Google Scholar
Jordal K, Bredesen R, Kvamsdal H, Bolland O. Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 2004, 29(9–10): 1269–1278
CAS
Google Scholar
Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2004, 241(1): 121–135
CAS
Google Scholar
Moon J H, Ahn H, Hyun S H, Lee C H. Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO2/N2,CO2/H2 and CH4/H2 systems. Korean Journal of Chemical Engineering, 2004, 21(2): 477–487
CAS
Google Scholar
Li S, Alvarado G, Noble R D, Falconer J L. Effects ofimpurities on CO2/CH4 separations through SAPO-34 membranes. Journal of Membrane Science, 2005, 251(1–2): 59–66
CAS
Google Scholar
Li S, Martinek J G, Falconer J L, Noble R D, Gardner T Q. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research, 2005, 44(9): 3220–3228
CAS
Google Scholar
Jordal K, Bolland O, Möller B F, Torisson T. Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture. International Journal of Green Energy, 2005, 2(2): 167–180
CAS
Google Scholar
Sakamoto Y, Nagata K, Yogo K, Yamada K. Preparation and CO2 separation properties of amine-modified mesoporous silica membranes. Microporous and Mesoporous Materials, 2007, 101(1–2): 303–311
CAS
Google Scholar
Xiao S, Feng X, Huang R Y. Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 306(1–2): 36–46
CAS
Google Scholar
Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H. Selective separation of CO2 by using novel facilitated transport membrane at elevated temperatures and pressures. Journal of Membrane Science, 2007, 291(1–2): 157–164
CAS
Google Scholar
Paul S, Ghoshal A K, Mandal B. Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, 2008, 144(3): 352–360
CAS
Google Scholar
Kai T, Kazama S, Fujioka Y. Development ofcesium-incorporated carbon membranes for CO2 separation under humid conditions. Journal of Membrane Science, 2009, 342(1–2): 14–21
CAS
Google Scholar
Nistor C, Shishatskiy S, Popa M, Nunes S P. CO2 selective membranes based on epoxy silane. Revue Roumaine de Chimie, 2009, 54: 603–610
CAS
Google Scholar
Li S, Carreon M A, Zhang Y, Funke H H, Noble R D, Falconer J L. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2010, 352(1–2): 7–13
CAS
Google Scholar
Scholes C A, Smith K H, Kentish S E, Stevens G W. CO2 capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755
CAS
Google Scholar
Tiscornia I, Kumakiri I, Bredesen R, Téllez C, Coronas J. Microporous titanosilicate ETS-10 membrane for high pressure CO2 separation. Separation and Purification Technology, 2010, 73(1): 8–12
CAS
Google Scholar
Favre N, Pierre A C. Synthesis and behaviour of hybrid polymersilica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO2. Journal of Sol-Gel Science and Technology, 2011, 60(2): 177–188
CAS
Google Scholar
Lotric A, Sekavcnik M, Kunze C, Spliethoff H. Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO2 capture. Chinese Journal of Mechanical Engineering, 2011, 57(12): 911–926
Google Scholar
Martin F Z, Dijkstra J W, Boon J, Meuldijk J. A membrane reformer with permeate side combustion for CO2 capture: modeling and design. Energy Procedia, 2011, 4: 707–714
CAS
Google Scholar
Ostwal M, Singh R P, Dec S F, Lusk M T, Way J D. 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation. Journal of Membrane Science, 2011, 369(1–2): 139–147
CAS
Google Scholar
Venna S R, Carreon M A. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir, 2011, 27(6): 2888–2894
CAS
PubMed
Google Scholar
Wade J L, Lee C, West A C, Lackner K S. Composite electrolyte membranes for high temperature CO2 separation. Journal of Membrane Science, 2011, 369(1–2): 20–29
CAS
Google Scholar
Chabanon E, Roizard D, Favre E. Modelling strategies of membrane contactor processes for CO2 post-combustion capture: a critical reassessment. Procedia Engineering, 2012, 44: 343–346
Google Scholar
Lau C H, Paul D R, Chung T S. Molecular design of nanohybrid gas separation membranes for optimal CO2 separation. Polymer, 2012, 53(2): 454–465
CAS
Google Scholar
Li H, Pieterse J, Dijkstra J, Boon J, Van Den Brink R, Jansen D. Bench-scale WGS membrane reactor for CO2 capture with co-production of H2. International Journal of Hydrogen Energy, 2012, 37(5): 4139–4143
CAS
Google Scholar
Madhusoodana C, Patil M, Aminabhavi T. Ceramic supported composite membranes of hydroxy-ethyl-cellulose loaded with AL-MCM-41 for CO2 separation. Procedia Engineering, 2012, 44: 108–109
CAS
Google Scholar
Modarresi S, Soltanieh M, Mousavi S A, Shabani I. Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation. Journal of Applied Polymer Science, 2012, 124(S1): E199–E204
CAS
Google Scholar
Rongwong W, Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. Journal of Membrane Science, 2012, 392: 38–47
Google Scholar
Smart S, Vente J, Da Costa J D. High temperature H2/CO2 separation using cobalt oxide silica membranes. International Journal of Hydrogen Energy, 2012, 37(17): 12700–12707
CAS
Google Scholar
Bae T H, Long J R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569
CAS
Google Scholar
Choi J H, Park M J, Kim J, Ko Y, Lee S H, Baek I. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194
CAS
Google Scholar
Koutsonikolas D E, Kaldis S P, Pantoleontos G T, Zaspalis V T, Sakellaropoulos G P. Techno-economic assessment of polymeric, ceramic and metallic membranes integration in an advanced IGCC process for H2 production and CO2 capture. Trans, 2013, 35: 715–720
Google Scholar
Lee C B, Lee S W, Park J S, Lee D W, Hwang K R, Ryi S K, Kim S H. Long-term CO2 capture tests of Pd-based composite membranes with module configuration. International Journal of Hydrogen Energy, 2013, 38(19): 7896–7903
CAS
Google Scholar
Lin Y F, Chen C H, Tung K L, Wei T Y, Lu S Y, Chang K S. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements. ChemSusChem, 2013, 6(3): 437–442
CAS
PubMed
Google Scholar
Ryi S K, Lee C B, Lee S W, Park J S. Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture. Energy, 2013, 51: 237–242
CAS
Google Scholar
Zhang K, Zou Y, Su C, Shao Z, Liu L, Wang S, Liu S. CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427: 168–175
CAS
Google Scholar
Zhu X, Chai S, Tian C, Fulvio P F, Han K S, Hagaman E W, Veith G M, Mahurin S M, Brown S, Liu H, Dai S. Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. Macromolecular Rapid Communications, 2013, 34(5): 452–459
CAS
PubMed
Google Scholar
Zhao Y, Jung B T, Ansaloni L, Ho W W. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation. Journal of Membrane Science, 2014, 459: 233–243
CAS
Google Scholar
Deng L, Hägg M B. Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. International Journal of Greenhouse Gas Control, 2014, 26: 127–134
CAS
Google Scholar
Lin Y F, Ko C C, Chen C H, Tung K L, Chang K S, Chung T W. Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors. Applied Energy, 2014, 129: 25–31
CAS
Google Scholar
Patel R, Kim S J, Roh D K, Kim J H. Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes. Chemical Engineering Journal, 2014, 254: 46–53
CAS
Google Scholar
Pedram M Z, Omidkhah M, Amooghin A E. Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 74–82
Google Scholar
Rabiee H, Soltanieh M, Mousavi S A, Ghadimi A. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. Journal of Membrane Science, 2014, 469: 43–58
CAS
Google Scholar
Ryi S K, Lee S W, Park J W, Oh D K, Park J S, Kim S S. Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catalysis Today, 2014, 236: 49–56
CAS
Google Scholar
Scholes C A, Ho M T, Aguiar A A, Wiley D E, Stevens G W, Kentish S E. Membrane gas separation processes for CO2 capture from cement kiln flue gas. International Journal of Greenhouse Gas Control, 2014, 24: 78–86
CAS
Google Scholar
Shi H. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New Journal of Chemistry, 2014, 38(11): 5276–5278
CAS
Google Scholar
Taniguchi I, Fujikawa S. CO2 separation with nano-thick polymeric membrane for pre-combustion. Energy Procedia, 2014, 63: 235–242
CAS
Google Scholar
Tseng H H, Chang S H, Wey M Y. A carbon gutter layer-modified α-Al2O3 substrate for PPO membrane fabrication and CO2 separation. Journal of Membrane Science, 2014, 454: 51–61
CAS
Google Scholar
Wu T, Wang B, Lu Z, Zhou R, Chen X. Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 2014, 471: 338–346
CAS
Google Scholar
Zhang L, Gong Y, Brinkman K S, Wei T, Wang S, Huang K. Flux of silver-carbonate membranes for post-combustion CO2 capture: the effects of membrane thickness, gas concentration and time. Journal of Membrane Science, 2014, 455: 162–167
CAS
Google Scholar
Zhang L, Gong Y, Yaggie J, Wang S, Romito K, Huang K. Surface modified silver-carbonate mixed conducting membranes for high flux CO2 separation with enhanced stability. Journal of Membrane Science, 2014, 453: 36–41
CAS
Google Scholar
Azizi M, Mousavi S A. CO2/H2 separation using a highly permeable polyurethane membrane: molecular dynamics simulation. Journal of Molecular Structure, 2015, 1100: 401–414
CAS
Google Scholar
Kammakakam I, Nam S, Kim T H. Ionic group-mediated crosslinked polyimide membranes for enhanced CO2 separation. Royal Society of Chemistry Advances, 2015, 5(86): 69907–69914
CAS
Google Scholar
Konruang S, Sirijarukul S, Wanichapichart P, Yu L, Chittrakarn T. Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. Journal of Applied Polymer Science, 2015, 132(25): 42074
Google Scholar
Lin Y F, Chang J M, Ye Q, Tung K L. Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors. Applied Energy, 2015, 154: 21–25
CAS
Google Scholar
Nabian N, Ghoreyshi A A, Rahimpour A, Shakeri M. Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean Journal of Chemical Engineering, 2015, 32(11): 2204–2211
CAS
Google Scholar
Nwogu N C, Kajama M N, Osueke G, Gobina E. High performance valuation of CO2 gas separation ceramic membrane system. In: Ao S I, Gelman L, Hukins D W L, Hunter A, Korsunsky A M, eds. Proceedings of the 2015 World Congress on Engineering (WCE 2015). Hong Kong: Newswood Academic Publishing, 2015, 824–827
Qiao Z, Wang Z, Yuan S, Wang J, Wang S. Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation. Journal of Membrane Science, 2015, 475: 290–302
CAS
Google Scholar
Shin D Y, Hwang K R, Park J S, Park M J. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture. Korean Journal of Chemical Engineering, 2015, 32(7): 1414–1421
CAS
Google Scholar
Sun C, Wen B, Bai B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2,CH4/H2S and CH4/N2 separation. Chemical Engineering Science, 2015, 138: 616–621
CAS
Google Scholar
Tong J, Zhang L, Fang J, Han M, Huang K. Electrochemical capture of CO2 from natural gas using a high-temperature ceramic-carbonate membrane. Journal of the Electrochemical Society, 2015, 162(4): E43–E46
CAS
Google Scholar
Wang B, Sun C, Li Y, Zhao L, Ho W W, Dutta P K. Rapid synthesis of faujasite/polyethersulfone composite membrane and application for CO2/N2 separation. Microporous and Mesoporous Materials, 2015, 208: 72–82
CAS
Google Scholar
Wang N, Mundstock A, Liu Y, Huang A, Caro J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chemical Engineering Science, 2015, 124: 27–36
CAS
Google Scholar
Wang S, Tian Z, Feng J, Wu H, Li Y, Liu Y, Li X, Xin Q, Jiang Z. Enhanced CO2 separation properties by incorporating poly (ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473: 310–317
CAS
Google Scholar
Xin Q, Gao Y, Wu X, Li C, Liu T, Shi Y, Li Y, Jiang Z, Wu H, Cao X. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. Journal of Membrane Science, 2015, 488: 13–29
CAS
Google Scholar
Xing W, Peters T, Fontaine M L, Evans A, Henriksen P P, Norby T, Bredesen R. Steam-promoted CO2 flux in dual-phase CO2 separation membranes. Journal of Membrane Science, 2015, 482: 115–119
CAS
Google Scholar
Zheng Y, Hu N, Wang H, Bu N, Zhang F, Zhou R. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 2015, 475: 303–310
CAS
Google Scholar
Zhou R, Wang H, Wang B, Chen X, Li S, Yu M. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516–7523
CAS
Google Scholar
Dai Z, Bai L, Hval K N, Zhang X, Zhang S, Deng L. Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China. Chemistry, 2016, 59(5): 538–546
CAS
Google Scholar
Dong G, Zhang Y, Hou J, Shen J, Chen V. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(18): 5403–5414
CAS
Google Scholar
Dong L, Zhang C, Bai Y, Shi D, Li X, Zhang H, Chen M. High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3486–3496
CAS
Google Scholar
Jeon H, Kim D J, Park M S, Ryu D Y, Kim J H. Amphiphilic graft copolymer nanospheres: from colloidal self-assembly to CO2 capture membranes. ACS Applied Materials & Interfaces, 2016, 8(14): 9454–9461
CAS
Google Scholar
Karimi S, Korelskiy D, Mortazavi Y, Khodadadi A A, Sardari K, Esmaeili M, Antzutkin O N, Shah F U, Hedlund J. High flux acetate functionalized silica membranes based on in-situ co-condensation for CO2/N2 separation. Journal of Membrane Science, 2016, 520: 574–582
CAS
Google Scholar
Li W, Zhang Y, Su P, Xu Z, Zhang G, Shen C, Meng Q. Metal-organic framework channelled graphene composite membranes for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18747–18752
CAS
Google Scholar
Lin Y F, Kuo J W. Mesoporous bis(trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chemical Engineering Journal, 2016, 300: 29–35
CAS
Google Scholar
Moradi M R, Chenar M P, Noie S H. Using PDMS coated TFC-RO membranes for CO2/N2 gas separation: experimental study, modeling and optimization. Polymer Testing, 2016, 56: 287–298
CAS
Google Scholar
Mubashir M, Yeong Y F, Lau K K. Ultrasonic-assisted secondary growth of deca-dodecasil 3 rhombohedral (DD3R) membrane and its process optimization studies in CO2/CH4 separation using response surface methodology. Journal of Natural Gas Science and Engineering, 2016, 30: 50–63
CAS
Google Scholar
Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64
CAS
Google Scholar
Qin Y, Lv J, Fu X, Guo R, Li X, Zhang J, Wei Z. High-performance SPEEK/amino acid salt membranes for CO2 separation. Royal Society of Chemistry Advances, 2016, 6(3): 2252–2258
CAS
Google Scholar
Saedi S, Seidi F, Moradi F, Xiang X. Preparation and characterization of an amino-cellulose (AC) derivative for development of thin-film composite membrane for CO2/CH4 separation. Stärke, 2016, 68(7–8): 651–661
CAS
Google Scholar
Saeed M, Deng L. Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2016, 53: 254–262
CAS
Google Scholar
Wang Y, Yang Q, Li J, Yang J, Zhong C. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Physical Chemistry Chemical Physics, 2016, 18(12): 8352–8358
CAS
PubMed
Google Scholar
Wong K, Goh P, Ismail A F. Thin film nanocomposite: the next generation selective membrane for CO2 removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15726–15748
CAS
Google Scholar
Zhang P, Tong J, Jee Y, Huang K. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat. Chemical Communications, 2016, 52(63): 9817–9820
CAS
PubMed
Google Scholar
Zhong S, Bu N, Zhou R, Jin W, Yu M, Li S. Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. Journal of Membrane Science, 2016, 520: 507–514
CAS
Google Scholar
Benito J, Sánchez Laínez J, Zornoza B, Martín S, Carta M, Malpass Evans R, Téllez C, McKeown N B, Coronas J, Gascón I. Ultrathin composite polymeric membranes for CO2/N2 separation with minimum thickness and high CO2 permeance. Chem-SusChem, 2017, 10(20): 4014–4017
CAS
Google Scholar
Kgaphola K, Sigalas I, Daramola M O. Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO2 capture. Asia-PacificJournal of Chemical Engineering, 2017, 12(6): 894–904
CAS
Google Scholar
Khakpay A, Rahmani F, Nouranian S, Scovazzo P. Molecular insights on the CH4/CO2 separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. Journal of Physical Chemistry C, 2017, 121(22): 12308–12320
CAS
Google Scholar
Kim N U, Park B J, Choi Y, Lee K B, Kim J H. High-performance self-cross-linked PGP-POEM comb copolymer membranes for CO2 capture. Macromolecules, 2017, 50(22): 8938–8947
CAS
Google Scholar
Kline G K, Weidman J R, Zhang Q, Guo R. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations. Journal of Membrane Science, 2017, 544: 25–34
CAS
Google Scholar
Mahdavi H R, Azizi N, Mohammadi T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/g-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67
Google Scholar
Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. Journal of Membrane Science, 2017, 522: 351–362
CAS
Google Scholar
Qu Y, Li F, Zhao M. Theoretical design of highly efficient CO2/N2 separation membranes based on electric quadrupole distinction. Journal of Physical Chemistry C, 2017, 121(33): 17925–17931
CAS
Google Scholar
Selyanchyn R, Fujikawa S. Membrane thinning for efficient CO2 capture. Science and Technology of Advanced Materials, 2017, 18(1): 816–827
CAS
PubMed
PubMed Central
Google Scholar
Shafie SNA, Man Z, Idris A. Development of polycarbonate-silica matrix membrane for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020129
Google Scholar
Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Kitamura Y. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy, 2017, 124: 29–39
CAS
Google Scholar
Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Science and Technology of Advanced Materials, 2017, 18(1): 950–958
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289
CAS
Google Scholar
Wang S, Xie Y, He G, Xin Q, Zhang J, Yang L, Li Y, Wu H, Zhang Y, Guiver M D, Jiang Z. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angewandte Chemie International Edition, 2017, 56(45): 14246–14251
CAS
PubMed
Google Scholar
Zhang C, Zhang W, Gao H, Bai Y, Sun Y, Chen Y. Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation. Journal of Membrane Science, 2017, 528: 72–81
CAS
Google Scholar
Zhang Y, Wang H, Zhang Y, Ding X, Liu J. Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137
CAS
Google Scholar
Zhao L, Sang P, Guo S, Liu X, Li J, Zhu H, Guo W. Promising monolayer membranes for CO2/N2/CH4 separation: graphdiynes modified respectively with hydrogen, fluorine and oxygen atoms. Applied Surface Science, 2017, 405: 455–464
CAS
Google Scholar
Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19914–19923
CAS
Google Scholar
Constantinou A, Barrass S, Gavriilidis A. CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis, 2018, 7(6): 471–476
CAS
Google Scholar
Russo G, Prpich G, Anthony E J, Montagnaro F, Jurado N, Di Lorenzo G, Darabkhani H G. Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 2018, 549: 649–659
CAS
Google Scholar
Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(5): 1528–1539
CAS
Google Scholar
Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549: 670–679
CAS
Google Scholar
Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation. Journal of Applied Polymer Science, 2018, 135(5): 45765
Google Scholar
Ovalle Encinia O, Pfeiffer H, Ortiz Landeros J. Ce0.85Sm0.15O2-Sm0.6Sr0.4Al0.3Fe0.7O3 composite for the preparation of dense ceramic-carbonate membranes for CO2 separation. Journal of Membrane Science, 2018, 547: 11–18
CAS
Google Scholar
Constantinou A, Barrass S, Pronk F, Bril T, Wenn D, Shaw J, Gavriilidis A. CO2 absorption in a high efficiency silicon nitride mesh contactor. Chemical Engineering Journal, 2012, 207: 766–771
Google Scholar
Constantinou A, Gavriilidis A. CO2 absorption in a microstructured mesh reactor. Industrial & Engineering Chemistry Research, 2010, 49(3): 1041–1049
CAS
Google Scholar
Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous and Mesoporous Materials, 2008, 110(2–3): 310–317
CAS
Google Scholar
Duan S, Taniguchi I, Kai T, Kazama S. Development of poly (amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia, 2013, 37: 924–931
CAS
Google Scholar
Ahmad F, Lau K K, Shariff A M. Modeling and parametric study for CO2/CH4 separation using membrane processes. World Academy of Science, Engineering and Technology, 2010, 2010(4): 387–392
Google Scholar
Arias A M, Mussati M C, Mores P L, Scenna N J, Caballero J A, Mussati S F. Optimization of multi-stage membrane systems for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2016, 53: 371–390
CAS
Google Scholar
Couling D J, Prakash K, Green W H. Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined-cycle power with CO2 capture and sequestration. Industrial & Engineering Chemistry Research, 2011, 50(19): 11313–11336
CAS
Google Scholar
Hasan M F, Baliban R C, Elia J A, Floudas C A. Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Industrial & Engineering Chemistry Research, 2012, 51(48): 15642–15664
CAS
Google Scholar
Johannessen E, Jordal K. Study of a H2 separating membrane reactor for methane steam reforming at conditions relevant for power processes with CO2 capture. Energy Conversion and Management, 2005, 46(7–8): 1059–1071
CAS
Google Scholar
Jusoh N, Lau K K, Shariff A M, Yeong Y. Capture of bulk CO2 from methane with the presence of heavy hydrocarbon using membrane process. International Journal of Greenhouse Gas Control, 2014, 22: 213–222
CAS
Google Scholar
Jusoh N, Lau K K, Yeong Y F, Shariff A M. Bulk CO2/CH4 separation for offshore operating conditions using membrane process. Sains Malaysiana, 2016, 45(11): 1707–1714
CAS
Google Scholar
Lee S H, Kim J N, Eom W H, Ryi S K, Park J S, Baek I H. Development of pilot WGS/multi-layer membrane for CO2 capture. Chemical Engineering Journal, 2012, 207: 521–525
Google Scholar
Merkel T C, Wei X, He Z, White L S, Wijmans J, Baker R W. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Industrial & Engineering Chemistry Research, 2012, 52(3): 1150–1159
Google Scholar
Nagumo R, Iwata S, Mori H. Simulated process evaluation of synthetic natural gas production based on biomass gasification and potential of CO2 capture using membrane separation Technology. Journal of the Japan Petroleum Institute, 2013, 56(6): 395–400
CAS
Google Scholar
Piroonlerkgul P, Laosiripojana N, Adesina A, Assabumrungrat S. Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal. Chemical Engineering and Processing: Process Intensification, 2009, 48(2): 672–682
CAS
Google Scholar
Rezvani S, Huang Y, McIlveen Wright D, Hewitt N, Mondol J D. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel, 2009, 88(12): 2463–2472
CAS
Google Scholar
Scholes C A, Simioni M, Qader A, Stevens G W, Kentish S E. Membrane gas-solvent contactor trials of CO2 absorption from syngas. Chemical Engineering Journal, 2012, 195: 188–197
Google Scholar
Shao P, Dal Cin M M, Guiver M D, Kumar A. Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427: 451–459
CAS
Google Scholar
Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie, 2015, 127(2): 588–592
Google Scholar
Skorek Osikowska A, Bartela L, Kotowicz J. Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant. Journal of Power Technologies, 2015, 95(3): 201–210
CAS
Google Scholar
Stanislowski J, Holmes M, Snyder A, Tolbert S, Curran T. Advanced CO2 separation technologies: coal gasification, warmgas cleanup, and hydrogen separation membranes. Energy Procedia, 2013, 37: 2316–2326
CAS
Google Scholar
Tuinier M, Hamers H, van Sint Annaland M. Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559–1565
CAS
Google Scholar
Turi D, Ho M, Ferrari M, Chiesa P, Wiley D, Romano M C. CO2 capture from natural gas combined cycles by CO2 selective membranes. International Journal of Greenhouse Gas Control, 2017, 61: 168–183
CAS
Google Scholar
Wang B, Zhu D C, Zhan M C, Liu W, Chen C S. Combustion of coal-derived CO with membrane-supplied oxygen enabling CO2 capture. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(9): 2481–2484
CAS
Google Scholar
Yang D, Wang Z, Wang J, Wang S. Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas. Energy & Fuels, 2009, 23(10): 4755–4762
CAS
Google Scholar
Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1–2): 173–183
CAS
Google Scholar
Wang Z, Dong S, Li N, Cao X, Sheng M, Xu R, Wang B, Wu H, Ma C, Yuan Y. CO2-selective membranes: how easy is their moving from laboratory to industrial scale? In: Current Trends and Future Developments on (bio-) membranes. Amsterdam: Elsevier, 2018, 75–102
Google Scholar
Doran P. Chapter 11-Unit Operations, In: Bioprocess Engineering Principles. 2nd ed. London: Elsevier, 2013, 445–595
Google Scholar
Cui Z, Muralidhara H. Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Burlington: Elsevier, 2010, 1–270
Google Scholar
Yilbas B S. The Laser Cutting Process: Analysis and Applications. Amsterdam: Elsevier, 2017, 5–311
Google Scholar
Rezzadori K, PenhaF M, PronerM C, Zin G, Petrus J C, Di Luccio M. Impact of organic solvents on physicochemical properties of nanofiltration and reverse-osmosis membranes. Chemical Engineering & Technology, 2019, 42(12): 2700–2708
CAS
Google Scholar
Zhang Y T, Dai X G, Xu G H, Zhang L, Zhang H Q, Liu J D, Chen H L. Modeling of CO2 mass transport across a hollow fiber membrane reactor filled with immobilized enzyme. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(7): 2069–2077
CAS
Google Scholar
Zhang Y T, Zhang L, Chen H L, Zhang H M. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 2010, 65(10): 3199–3207
CAS
Google Scholar
Singh R. Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation. Oxford: Butterworth-Heinemann, 2014, 1–300
Google Scholar