Skip to main content

CO2 capture using membrane contactors: a systematic literature review

Abstract

With fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.

References

  1. Schiffer H W, Kober T, Panos E. World energy council’s global energy scenarios to 2060. Magazine for Energy Industry, 2018, 42(2): 91–102

    Google Scholar 

  2. Johansson T B, Patwardhan A P, Nakicenovic N, Gomez Echeverri L. Global Energy Assessment: Toward A Sustainable Future. Cambridge UK and New York, Laxenburg, Austria: Cambridge University Press, and the International Institute for Applied Systems Analysis, 2012, 99–1257

    Google Scholar 

  3. Carapellucci R, Milazzo A. Membrane systems for CO2 capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2003, 217(5): 505–517

    CAS  Google Scholar 

  4. Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. Acceleration ofglobal warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184–187

    CAS  PubMed  Google Scholar 

  5. Koytsoumpa E I, Bergins C, Kakaras E. The CO2 economy: review of CO2 capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132: 3–16

    CAS  Google Scholar 

  6. Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S. Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55–125

    CAS  Google Scholar 

  7. Jansen D, Gazzani M, Manzolini G, Van Dijk E, Carbo M. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2015, 40: 167–187

    CAS  Google Scholar 

  8. Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B, Davidson O, De Coninck H, eds. New York: Cambridge University Press, 2005, 431

  9. Wang Y, Zhao L, Otto A, Robinius M, Stolten D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114: 650–665

    CAS  Google Scholar 

  10. Nagy E. Basic Equations of Mass Transport Through A Membrane Layer. Amsterdam: Elsevier, 2018, 11–87

    Google Scholar 

  11. Khulbe K, Matsuura T. Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 2018, 8(1): 19

    Google Scholar 

  12. Luis P, van Gerven T, van der Bruggen B. Recent developments in membrane-based technologies for CO2 capture. Progress in Energy and Combustion Science, 2012, 38(3): 419–448

    CAS  Google Scholar 

  13. Hafeez S, Al-Salem S, Constantinou A. Membrane reactors for renewable fuel production and their environmental benefits, in membranes for environmental applications. Vol. 42. Switzerland: Springer, 2020, 383–411

    Google Scholar 

  14. Li J L, Chen B H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005, 41(2): 109–122

    CAS  Google Scholar 

  15. Sun X, Constantinou A, Gavriilidis A. Stripping of acetone from isopropanol solution with membrane and mesh gasliquid contactors. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 991–997

    CAS  Google Scholar 

  16. Constantinou A, Ghiotto F, Lam K F, Gavriilidis A. Stripping of acetone from water with microfabricated and membrane gasliquid contactors. Analyst (London), 2014, 139(1): 266–272

    CAS  Google Scholar 

  17. Ilyas M, Ahmad W, Khan H, Yousaf S, Khan K, Nazir S. Plastic waste as a significant threat to environment—asystematic literature review. Reviews on Environmental Health, 2018, 33(4): 383–406

    PubMed  Google Scholar 

  18. Favre E. Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59

    CAS  Google Scholar 

  19. Baltus R E, Counce R M, Culbertson B H, Luo H, DePaoli D W, Dai S, Duckworth D C. Examination of the potential of ionic liquids for gas separations. Separation Science and Technology, 2005, 40(1–3): 525–541

    CAS  Google Scholar 

  20. Yan S P, Fang M X, Zhang W F, Wang S Y, Xu Z K, Luo Z Y, Cen K F. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Processing Technology, 2007, 88(5): 501–511

    CAS  Google Scholar 

  21. Langevin D, Pinoche M, Se E, Me M, Roux R. CO2 facilitated transport through functionalized cation-exchange membranes. Journal of Membrane Science, 1993, 82(1–2): 51–63

    CAS  Google Scholar 

  22. Li K, Teo W K. Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules. Separation and Purification Technology, 1998, 13(1): 79–88

    CAS  Google Scholar 

  23. Suzuki H, Tanaka K, Kita H, Okamoto K, Hoshino H, Yoshinaga T, Kusuki Y. Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 1998, 146(1): 31–37

    CAS  Google Scholar 

  24. Tokuda Y, Fujisawa E, Okabayashi N, Matsumiya N, Takagi K, Mano H, Haraya K, Sato M. Development of hollow fiber membranes for CO2 separation. Energy Conversion and Management, 1997, 38: S111–S116

    CAS  Google Scholar 

  25. Gong Y, Wang Z, Wang S. Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module. Chemical Engineering and Processing: Process Intensification, 2006, 45(8): 652–660

    CAS  Google Scholar 

  26. Ismail A F, Yaacob N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system. Journal of Membrane Science, 2006, 275(1–2): 151–165

    CAS  Google Scholar 

  27. Kapantaidakis G, Koops G, Wessling M, Kaldis S, Sakellaropoulos G. CO2 plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(7): 1702–1711

    CAS  Google Scholar 

  28. Dae-Hwan L, Hyung-Taek K. Simulation study of CO2 separation process by using hollow fiber membrane. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 829–830

    Google Scholar 

  29. Lee Y, Noble R D, Yeom B Y, Park Y I, Lee K H. Analysis of CO2 removal by hollow fiber membrane contactors. Journal of Membrane Science, 2001, 194(1): 57–67

    CAS  Google Scholar 

  30. Liu L, Chakma A, Feng X. CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes. Industrial & Engineering Chemistry Research, 2005, 44(17): 6874–6882

    CAS  Google Scholar 

  31. Qin J J, Chung T S, Cao C, Vora R. Effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) copolyimide and fabrication of its hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2005, 250(1–2): 95–103

    CAS  Google Scholar 

  32. Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N. Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. Journal of Membrane Science, 2004, 234(1–2): 83–94

    CAS  Google Scholar 

  33. Wang R, Li D, Liang D. Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 849–856

    CAS  Google Scholar 

  34. Wang R, Zhang H, Feron P, Liang D. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 2005, 46(1–2): 33–40

    CAS  Google Scholar 

  35. Shim H M, Lee J S, Wang H Y, Choi S H, Kim J H, Kim H T. Modeling and economic analysis of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2007, 24(3): 537–541

    CAS  Google Scholar 

  36. Zhang H Y, Wang R, Liang D T, Tay J H. Modeling and experimental study of CO2 absorption in a hollow fiber membrane contactor. Journal of Membrane Science, 2006, 279(1–2): 301–310

    CAS  Google Scholar 

  37. Al Marzouqi M, El Naas M H, Marzouk S A, Abdullatif N. Modeling of chemical absorption of CO2 in membrane contactors. Separation and Purification Technology, 2008, 62(3): 499–506

    CAS  Google Scholar 

  38. Al Marzouqi M H, El Naas M H, Marzouk S A, Al Zarooni M A, Abdullatif N, Faiz R. Modeling of CO2 absorption in membrane contactors. Separation and Purification Technology, 2008, 59(3): 286–293

    CAS  Google Scholar 

  39. El Naas M H, Al Marzouqi M, Marzouk S A, Abdullatif N. Evaluation of the removal of CO2 using membrane contactors: membrane wettability. Journal of Membrane Science, 2010, 350(1–2): 410–416

    CAS  Google Scholar 

  40. Faiz R, Al Marzouqi M. Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. Journal of Membrane Science, 2009, 342(1–2): 269–278

    CAS  Google Scholar 

  41. Ji P, Cao Y, Zhao H, Kang G, Jie X, Liu D, Liu J, Yuan Q. Preparation of hollow fiber poly (N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation. Journal of Membrane Science, 2009, 342(1–2): 190–197

    CAS  Google Scholar 

  42. Keshavarz P, Fathikalajahi J, Ayatollahi S. Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor. Journal of Hazardous Materials, 2008, 152(3): 1237–1247

    CAS  PubMed  Google Scholar 

  43. Kumar A, Yuan X, Sahu A K, Dewulf J, Ergas S J, Van Langenhove H. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(3): 387–394

    CAS  Google Scholar 

  44. Lu J G, Ji Y, Zhang H, Chen M D. CO2 capture using activated amino acid salt solutions in a membrane contactor. Separation Science and Technology, 2010, 45(9): 1240–1251

    CAS  Google Scholar 

  45. Lu J G, Zheng Y F, Cheng M D. Membrane contactor for CO2 absorption applying amino-acid salt solutions. Desalination, 2009, 249(2): 498–502

    CAS  Google Scholar 

  46. Mansourizadeh A, Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988

    CAS  Google Scholar 

  47. Mansourizadeh A, Ismail A F, Abdullah M, Ng B. Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. Journal of Membrane Science, 2010, 355(1–2): 200–207

    CAS  Google Scholar 

  48. Mansourizadeh A, Ismail A F, Matsuura T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 2010, 353(1–2): 192–200

    CAS  Google Scholar 

  49. Marzouk S A, Al-Marzouqi M H, El-Naas M H, Abdullatif N, Ismail Z M. Removal of carbon dioxide from pressurized CO2CH4 gas mixture using hollow fiber membrane contactors. Journal of Membrane Science, 2010, 351(1–2): 21–27

    CAS  Google Scholar 

  50. Sandru M, Kim T J, Hägg M B. High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination, 2009, 240(1–3): 298–300

    CAS  Google Scholar 

  51. Simons K, Nijmeijer K, Wessling M. Gasliquid membrane contactors for CO2 removal. Journal of Membrane Science, 2009, 340(1–2): 214–220

    CAS  Google Scholar 

  52. Yan S, Fang M, Zhang W, Zhong W, Luo Z, Cen K. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Conversion and Management, 2008, 49(11): 3188–3197

    CAS  Google Scholar 

  53. Zhang H Y, Wang R, Liang D T, Tay J H. Theoretical and experimental studies of membrane wetting in the membrane gasliquid contacting process for CO2 absorption. Journal of Membrane Science, 2008, 308(1–2): 162–170

    CAS  Google Scholar 

  54. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Effect of membrane module arrangement of gas-liquid membrane contacting process on CO2 absorption performance: a modeling study. Journal of Membrane Science, 2011, 372(1–2): 75–86

    CAS  Google Scholar 

  55. Chen C C, Qiu W, Miller S J, Koros W J. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide. Journal of Membrane Science, 2011, 382(1–2): 212–221

    CAS  Google Scholar 

  56. Sandru M, Haukebø S H, Hägg M B. Composite hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2010, 346(1): 172–186

    CAS  Google Scholar 

  57. Simons K, Nijmeijer K, Mengers H, Brilman W, Wessling M. Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane contactors. ChemSusChem, 2010, 3(8): 939–947

    CAS  PubMed  Google Scholar 

  58. Jin H G, Han S H, Lee Y M, Yeo Y K. Modeling and control of CO2 separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2011, 28(1): 41–48

    CAS  Google Scholar 

  59. Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R. CO2 stripping from monoethanolamine using a membrane contactor. Journal of Membrane Science, 2011, 376(1–2): 110–118

    CAS  Google Scholar 

  60. Boributh S, Rongwong W, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. Journal of Membrane Science, 2012, 401: 175–189

    Google Scholar 

  61. Ghasem N, Al-Marzouqi M, Zhu L. Preparation and properties of polyethersulfone hollow fiber membranes with O-xylene as an additive used in membrane contactors for CO2 absorption. Separation and Purification Technology, 2012, 92: 1–10

    CAS  Google Scholar 

  62. Kim D H, Baek I H, Hong S U, Lee H K. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. Journal of Membrane Science, 2011, 372(1–2): 346–354

    CAS  Google Scholar 

  63. Kumbharkar S, Liu Y, Li K. High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 2011, 375(1–2): 231–240

    CAS  Google Scholar 

  64. Lee S H, Kim J N, Eom W H, Ko Y D, Hong S U, Back I H. Development of water gas shift/membrane hybrid system for precombustion CO2 capture in a coal gasification process. Energy Procedia, 2011, 4: 1139–1146

    CAS  Google Scholar 

  65. Mansourizadeh A, Ismail A F. CO2 stripping from water through porous PVDF hollow fiber membrane contactor. Desalination, 2011, 273(2–3): 386–390

    CAS  Google Scholar 

  66. Mansourizadeh A, Ismail A F. Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011, 5(4): 640–648

    CAS  Google Scholar 

  67. Nguyen P, Lasseuguette E, Medina Gonzalez Y, Remigy J, Roizard D, Favre E. A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. Journal of Membrane Science, 2011, 377(1–2): 261–272

    CAS  Google Scholar 

  68. Sohrabi M R, Marjani A, Moradi S, Davallo M, Shirazian S. Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes. Applied Mathematical Modelling, 2011, 35(1): 174–188

    Google Scholar 

  69. Ghasem N, Al Marzouqi M, Rahim N A. Modeling of CO2 absorption in a membrane contactor considering solvent evaporation. Separation and Purification Technology, 2013, 110: 1–10

    CAS  Google Scholar 

  70. Hassanlouei R N, Pelalak R, Daraei A. Wettability study in CO2 capture from flue gas using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 16: 233–240

    CAS  Google Scholar 

  71. Hwang H Y, Nam S Y, Koh H C, Ha S Y, Barbieri G, Drioli E. The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 205–211

    CAS  Google Scholar 

  72. Lively R P, Dose M E, Xu L, Vaughn J T, Johnson J, Thompson J A, Zhang K, Lydon M E, Lee J S, Liu L, Hu Z, Karvan O, Realff M J, Koros W J. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. Journal of Membrane Science, 2012, 423: 302–313

    Google Scholar 

  73. Marzouk S A, Al-Marzouqi M H, Teramoto M, Abdullatif N, Ismail Z M. Simultaneous removal of CO2 and H2Sfrom pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors. Separation and Purification Technology, 2012, 86: 88–97

    CAS  Google Scholar 

  74. Naim R, Ismail A F, Mansourizadeh A. Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping. Journal of Membrane Science, 2012, 423: 503–513

    Google Scholar 

  75. Naim R, Ismail A F, Mansourizadeh A. Preparation of microporous PVDF hollow fiber membrane contactors for CO2 stripping from diethanolamine solution. Journal of Membrane Science, 2012, 392: 29–37

    Google Scholar 

  76. Rahbari Sisakht M, Ismail A F, Matsuura T. Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 88: 99–106

    CAS  Google Scholar 

  77. Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. Journal of Membrane Science, 2012, 415: 221–228

    Google Scholar 

  78. Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. Effect of novel surface modifying macromolecules on morphology and performance of polysulfone hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 99: 61–68

    CAS  Google Scholar 

  79. Shirazian S, Marjani A, Rezakazemi M. Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Engineering with Computers, 2012, 28(2): 189–198

    Google Scholar 

  80. Kim K, Ingole P G, Kim J, Lee H. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal, 2013, 233: 242–250

    CAS  Google Scholar 

  81. Mehdipour M, Karami M, Keshavarz P, Ayatollahi S. Analysis of CO2 separation with aqueous potassium carbonate solution in a hollow fiber membrane contactor. Energy & Fuels, 2013, 27(4): 2185–2193

    CAS  Google Scholar 

  82. Naim R, Ismail A F. Effect of fiber packing density on physical CO2 absorption performance in gas-liquid membrane contactor. Separation and Purification Technology, 2013, 115: 152–157

    CAS  Google Scholar 

  83. Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, Wang S. PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(1): 215–228

    CAS  Google Scholar 

  84. Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T, Emadzadeh D. Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO2 absorption. Separation and Purification Technology, 2013, 116: 67–72

    CAS  Google Scholar 

  85. Razavi S M R, Razavi S M J, Miri T, Shirazian S. CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control, 2013, 15: 142–149

    CAS  Google Scholar 

  86. Shen J N, Yu C C, Zeng G N, Van der Bruggen B. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO2/N2 separation. International Journal of Molecular Sciences, 2013, 14(2): 3621–3638

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Amrei S M H H, Memardoost S, Dehkordi A M. Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(2): 657–672

    CAS  Google Scholar 

  88. Chen H Z, Thong Z, Li P, Chung T S. High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043–5053

    CAS  Google Scholar 

  89. Ghasem N, Al Marsouqi M, Rahim N A. Modeling and simulation of membrane contactor employed to strip CO2 from rich solvents via COMSOL Multiphysics®. In: Proceedings of the COMSOL Conference. Zurich: COMSL, 2014, 1–5

    Google Scholar 

  90. He X, Kim T J, Hägg M B. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: membrane optimization and process condition investigation. Journal of Membrane Science, 2014, 470: 266–274

    CAS  Google Scholar 

  91. Kimball E, Al Azki A, Gomez A, Goetheer E, Booth N, Adams D, Ferre D. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2014, 69(6): 1047–1058

    Google Scholar 

  92. Kundu P K, Chakma A, Feng X. Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2014, 28: 248–256

    CAS  Google Scholar 

  93. Li S, Wang Z, He W, Zhang C, Wu H, Wang J, Wang S. Effects of minor SO2 on the transport properties of fixed carrier membranes for CO2 capture. Industrial & Engineering Chemistry Research, 2014, 53(18): 7758–7767

    CAS  Google Scholar 

  94. Wang L, Zhang Z, Zhao B, Zhang H, Lu X, Yang Q. Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption. Separation and Purification Technology, 2013, 116: 300–306

    CAS  Google Scholar 

  95. Wang Z, Fang M, Pan Y, Yan S, Luo Z. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis. Chemical Engineering Science, 2013, 93: 238–249

    CAS  Google Scholar 

  96. Wang Z, Fang M, Yu H, Wei C C, Luo Z. Experimental and modeling study of trace CO2 removal in a hollow-fiber membrane contactor, using CO2-loaded monoethanolamine. Industrial & Engineering Chemistry Research, 2013, 52(50): 18059–18070

    CAS  Google Scholar 

  97. Yoshimune M, Haraya K. CO2/CH4 mixed gas separation using carbon hollow fiber membranes. Energy Procedia, 2013, 37: 1109–1116

    CAS  Google Scholar 

  98. Zhao Y, Ho W W. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Industrial & Engineering Chemistry Research, 2012, 52(26): 8774–8782

    Google Scholar 

  99. Ma C, Koros W J. Effects of hydrocarbon and water impurities on CO2/CH4 separation performance of ester-crosslinked hollow fiber membranes. Journal of Membrane Science, 2014, 451: 1–9

    CAS  Google Scholar 

  100. Makhloufi C, Lasseuguette E, Remigy J C, Belaissaoui B, Roizard D, Favre E. Ammonia based CO2 capture process using hollow fiber membrane contactors. Journal of Membrane Science, 2014, 455: 236–246

    CAS  Google Scholar 

  101. Mansourizadeh A, Aslmahdavi Z, Ismail A F, Matsuura T. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption. International Journal of Greenhouse Gas Control, 2014, 26: 83–92

    CAS  Google Scholar 

  102. Mansourizadeh A, Pouranfard A R. Microporous polyvinylidene fluoride hollow fiber membrane contactors for CO2 stripping: effect of PEG-400 in spinning dope. Chemical Engineering Research & Design, 2014, 92(1): 181 -190

    CAS  Google Scholar 

  103. Masoumi S, Keshavarz P, Rastgoo Z. Theoretical investigation on CO2 absorption into DEAB solution using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2014, 18: 23–30

    CAS  Google Scholar 

  104. Rahbari Sisakht M, Rana D, Matsuura T, Emadzadeh D, Padaki M, Ismail A F. Study on CO2 stripping from water through novel surface modified PVDF hollow fiber membrane contactor. Chemical Engineering Journal, 2014, 246: 306–310

    CAS  Google Scholar 

  105. Rahim N A, Ghasem N, Al Marzouqi M. Stripping of CO2 from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering, 2014, 21: 886–893

    CAS  Google Scholar 

  106. Rezaei M A, Ismail A F, Hashemifard S A, Bakeri G, Matsuura T. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. International Journal of Greenhouse Gas Control, 2014, 26: 147–157

    CAS  Google Scholar 

  107. Carapellucci R, Giordano L, Vaccarelli M. Study of a natural gas combined cycle with multi-stage membrane systems for CO2 post-combustion capture. Energy Procedia, 2015, 81: 412–421

    CAS  Google Scholar 

  108. Farjami M, Moghadassi A, Vatanpour V. Modeling and simulation of CO2 removal in a polyvinylidene fluoride hollow fiber membrane contactor with computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 2015, 98: 41–51

    CAS  Google Scholar 

  109. Goyal N, Suman S, Gupta S. Mathematical modeling of CO2 separation from gaseous-mixture using a hollow-fiber membrane module: physical mechanism and influence of partial-wetting. Journal of Membrane Science, 2015, 474: 64–82

    CAS  Google Scholar 

  110. Lee H J, Magnone E, Park J H. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. Journal of Membrane Science, 2015, 494: 143–153

    CAS  Google Scholar 

  111. Lee S, Choi J W, Lee S H. Separation of greenhouse gases (SF6, CF4 and CO2) in an industrial flue gas using pilot-scale membrane. Separation and Purification Technology, 2015, 148: 15–24

    CAS  Google Scholar 

  112. Li Y, Li X, Wu H, Xin Q, Wang S, Liu Y, Tian Z, Zhou T, Jiang Z, Tian H, Cao X, Wang B. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO2 separation. Journal of Membrane Science, 2015, 493: 460–469

    CAS  Google Scholar 

  113. Lock SSM, Lau K K, Ahmad F, Shariff A. Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. International Journal of Greenhouse Gas Control, 2015, 36: 114–134

    CAS  Google Scholar 

  114. Mulukutla T, Chau J, Singh D, Obuskovic G, Sirkar K K. Novel membrane contactor for CO2 removal from flue gas by temperature swing absorption. Journal of Membrane Science, 2015, 493: 321–328

    CAS  Google Scholar 

  115. Rahim N A, Ghasem N, Al Marzouqi M. Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2015, 26: 108–117

    Google Scholar 

  116. Sadoogh M, Mansourizadeh A, Mohammadinik H. An experimental study on the stability of PVDF hollow fiber membrane contactors for CO2 absorption with alkanolamine solutions. Royal Society of Chemistry Advances, 2015, 5(105): 86031–86040

    CAS  Google Scholar 

  117. Vakharia V, Ramasubramanian K, Ho W W. An experimental and modeling study of CO2-selective membranes for IGCC syngas purification. Journal of Membrane Science, 2015, 488: 56–66

    CAS  Google Scholar 

  118. Wickramanayake S, Hopkinson D, Myers C, Hong L, Feng J, Seol Y, Plasynski D, Zeh M, Luebke D. Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications. Journal of Membrane Science, 2014, 470: 52–59

    CAS  Google Scholar 

  119. Yan S, He Q, Zhao S, Wang Y, Ai P. Biogas upgrading by CO2 removal with a highly selective natural amino acid salt ingas-liquid membrane contactor. Chemical Engineering and Processing: Process Intensification, 2014, 85: 125–135

    CAS  Google Scholar 

  120. Zaidiza D A, Billaud J, Belaissaoui B, Rode S, Roizard D, Favre E. Modeling of CO2 post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. Journal of Membrane Science, 2014, 455: 64–74

    Google Scholar 

  121. Zhang L, Qu Z Y, Yan Y F, Ju S X, Zhang Z E. Numerical investigation of the effects of polypropylene hollow fibre membrane structure on the performance of CO2 removal from flue gas. Royal Society of Chemistry Advances, 2015, 5(1): 424–433

    CAS  Google Scholar 

  122. Zhang X, Seames W S, Tande B M. Recovery of CO2 from monoethanolamine using a membrane contactor. Separation Science and Technology, 2014, 49(1): 1–11

    Google Scholar 

  123. Zhang Y, Wang R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas-liquid membrane contactor. Journal of Membrane Science, 2014, 452: 379–389

    CAS  Google Scholar 

  124. Zhang Z, Yan Y, Zhang L, Chen Y, Ju S. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 2014, 19: 311–316

    CAS  Google Scholar 

  125. Zhang Z, Yan Y, Zhang L, Ju S. Numerical simulation and analysis of CO2 removal in a polypropylene hollow fiber membrane contactor. International Journal of Chemical Engineering, 2014, 2014: 1–7

    Google Scholar 

  126. Baghban A, Azar A A. ANFIS modeling of CO2 separation from natural gas using hollow fiber polymeric membrane. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2018, 40(2): 193–199

    CAS  Google Scholar 

  127. Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520: 860–868

    CAS  Google Scholar 

  128. Ghadiri M, Marjani A, Shirazian S. Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes. Environmental Science and Pollution Research International, 2017, 24(16): 14508–14515

    CAS  PubMed  Google Scholar 

  129. Gilassi S, Rahmanian N. CFD modelling of a hollow fibre membrane for CO2 removal by aqueous amine solutions of MEA, DEA and MDEA. International Journal of Chemical Reactor Engineering, 2016, 14(1): 53–61

    CAS  Google Scholar 

  130. Hosseini S, Mansourizadeh A. Preparation ofporous hydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 156–166

    CAS  Google Scholar 

  131. Jin P, Huang C, Shen Y, Zhan X, Hu X, Wang L, Wang L. Simultaneous separation of H2S and CO2 from biogas by gasliquid membrane contactor using single and mixed absorbents. Energy & Fuels, 2017, 31(10): 11117–11126

    CAS  Google Scholar 

  132. Jo E S, An X, Ingole P G, Choi W K, Park Y S, Lee H K. CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287

    CAS  Google Scholar 

  133. Jomekian A, Behbahani R M, Mohammadi T, Kargari A. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574

    CAS  Google Scholar 

  134. Kim S J, Park A, Nam S E, Park Y I, Lee P S. Practical designs of membrane contactors and their performances in CO2/CH4 separation. Chemical Engineering Science, 2016, 155: 239–247

    CAS  Google Scholar 

  135. Liao J, Wang Z, Wang M, Gao C, Zhao S, Wang J, Wang S. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane. Journal of Membrane Science, 2016, 511: 9–19

    CAS  Google Scholar 

  136. Otani A, Zhang Y, Matsuki T, Kamio E, Matsuyama H, Maginn E J. Molecular design of high CO2 reactivity and low viscosity ionic liquids for CO2 separative facilitated transport membranes. Industrial & Engineering Chemistry Research, 2016, 55(10): 2821–2830

    CAS  Google Scholar 

  137. Rafiq S, Deng L, Hägg M B. Role of facilitated transport membranes and composite membranes for efficient CO2 capture: a review. ChemBioEng Reviews, 2016, 3(2): 68–85

    Google Scholar 

  138. Razavi S M R, Shirazian S, Nazemian M. Numerical simulation of CO2 separation from gas mixtures in membrane modules: effect of chemical absorbent. Arabian Journal of Chemistry, 2016, 9(1): 62–71

    CAS  Google Scholar 

  139. Woo K T, Dong G, Lee J, Kim J S, Do Y S, Lee W H, Lee H S, Lee Y M. Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510: 472–480

    CAS  Google Scholar 

  140. Yan Y, Zhang Z, Zhang L, Wang J, Li J, Ju S. Modeling of CO2 separation from flue gas by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membrane contactors: effect of gas and liquid parameters. Journal of Energy Engineering, 2014, 141(4): 04014034

    Google Scholar 

  141. Zaidiza D A, Belaissaoui B, Rode S, Neveux T, Makhloufi C, Castel C, Roizard D, Favre E. Adiabatic modelling of CO2 capture by amine solvents using membrane contactors. Journal of Membrane Science, 2015, 493: 106–119

    Google Scholar 

  142. Zaidiza D A, Wilson S G, Belaissaoui B, Rode S, Castel C, Roizard D, Favre E. Rigorous modelling of adiabatic multicomponent CO2 post-combustion capture using hollow fibre membrane contactors. Chemical Engineering Science, 2016, 145: 45–58

    Google Scholar 

  143. Zhang L, Li J, Zhou L, Liu R, Wang X, Yang L. Fouling of impurities in desulfurized flue gas on hollow fiber membrane absorption for CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(29): 8002–8010

    CAS  Google Scholar 

  144. Zhang L, Qu R, Sha Y, Wang X, Yang L. Membrane gas absorption for CO2 capture from flue gas containing fine particles and gaseous contaminants. International Journal of Greenhouse Gas Control, 2015, 33: 10–17

    CAS  Google Scholar 

  145. Zhang L, Wang X, Yu R, Li J, Hu B, Yang L. Hollow fiber membrane separation process in the presence of gaseous and particle impurities for post-combustion CO2 capture. International Journal of Green Energy, 2017, 14(1): 15–23

    CAS  Google Scholar 

  146. Kang G, Chan Z P, Saleh S B M, Cao Y. Removal of high concentration CO2 from natural gas using high pressure membrane contactors. International Journal of Greenhouse Gas Control, 2017, 60: 1–9

    CAS  Google Scholar 

  147. Kim S H, Kim J K, Yeo J G, Yeo Y K. Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis. Chemical Engineering Research & Design, 2017, 117: 659–669

    CAS  Google Scholar 

  148. Lee S, Binns M, Lee J H, Moon J H, Yeo J G, Yeo Y K, Lee Y M, Kim J K. Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: process modeling and experiments. Journal of Membrane Science, 2017, 541: 224–234

    CAS  Google Scholar 

  149. Li H, Ding X, Zhang Y, Liu J. Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. Journal of Membrane Science, 2017, 543: 58–68

    CAS  Google Scholar 

  150. Liu B, Zhou R, Bu N, Wang Q, Zhong S, Wang B, Hidetoshi K. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. Journal of Membrane Science, 2017, 524: 12–19

    CAS  Google Scholar 

  151. Mirfendereski M, Mohammadi T. Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas-liquid contactors. Chemical and Biochemical Engineering Quarterly, 2017, 31(2): 139–144

    CAS  Google Scholar 

  152. Rahmawati Y, Nurkhamidah S. Susianto, Listiyana N I, Putricahyani W. Application of dual membrane contactor for simultaneous CO2 removal using continues diethanolamine (DEA). In: AIP Conference Proceedings. AIP Publishing, 2017, 100009

  153. Rudaini I A, Naim R, Abdullah S, Mokhtar N M, Jaafar J. PVDF-cloisite hollow fiber membrane for CO2 absorption via membrane contactor. Jurnal Teknologi, 2017, 79(1–2): 17–23

    Google Scholar 

  154. Saidi M. Kinetic study and process model development of CO2 absorption using hollow fiber membrane contactor with promoted hot potassium carbonate. Journal of Environmental Chemical Engineering, 2017, 5(5): 4415–4430

    CAS  Google Scholar 

  155. Saidi M. Mathematical modeling of CO2 absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation. Journal of Membrane Science, 2017, 524: 186–196

    CAS  Google Scholar 

  156. Usman M, Dai Z, Hillestad M, Deng L. Mathematical modeling and validation of CO2 mass transfer in a membrane contactor using ionic liquids for pre-combustion CO2 capture. Chemical Engineering Research & Design, 2017, 123: 377–387

    CAS  Google Scholar 

  157. Wang F, Kang G, Liu D, Li M, Cao Y. Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2135–2145

    CAS  Google Scholar 

  158. Zhou F, Tien H N, Xu W L, Chen J T, Liu Q, Hicks E, Fathizadeh M, Li S, Yu M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nature Communications, 2017, 8(1): 2107

    PubMed  PubMed Central  Google Scholar 

  159. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation. Journal of Colloid and Interface Science, 2018, 510: 12–19

    CAS  PubMed  Google Scholar 

  160. Ko D. Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO2 from coalbed methane. Journal of Membrane Science, 2018, 546: 258–269

    CAS  Google Scholar 

  161. Pang H, Gong H, Du M, Shen Q, Chen Z. Effect of non-solvent additive concentration on CO2 absorption performance of poly-vinylidenefluoride hollow fiber membrane contactor. Separation and Purification Technology, 2018, 191: 38–47

    CAS  Google Scholar 

  162. Fazaeli R, Razavi S M R, Najafabadi M S, Torkaman R, Hemmati A. Computational simulation of CO2 removal from gas mixtures by chemical absorbents in porous membranes. Royal Society of Chemistry Advances, 2015, 5(46): 36787–36797

    CAS  Google Scholar 

  163. Eslami S, Mousavi S M, Danesh S, Banazadeh H. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Advances in Engineering Software, 2011, 42(8): 612–620

    Google Scholar 

  164. Marti A M, Wickramanayake W, Dahe G, Sekizkardes A, Bank T L, Hopkinson D P, Venna S R. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(7): 5678–5682

    CAS  Google Scholar 

  165. Vu D Q, Koros W J, Miller S J. High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes. Industrial & Engineering Chemistry Research, 2002, 41(3): 367–380

    CAS  Google Scholar 

  166. Wang Z, Fang M, Yu H, Ma Q, Luo Z. Modeling of CO2 stripping in a hollow fiber membrane contactor for CO2 capture. Energy & Fuels, 2013, 27(11): 6887–6898

    CAS  Google Scholar 

  167. Lee J H, Lee J, Jo H J, Seong J G, Kim J S, Lee W H, Moon J, Lee D, Oh W J, Yeo J G, Lee Y M. Wet CO2/N2 permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 capture. Journal of Membrane Science, 2017, 539: 412–420

    CAS  Google Scholar 

  168. Li S, Pyrzynski T J, Klinghoffer N B, Tamale T, Zhong Y, Aderhold J L, Zhou S J, Meyer H S, Ding Y, Bikson B. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527: 92–101

    CAS  Google Scholar 

  169. Hwang S, Chi W S, Lee S J, Im S H, Kim J H, Kim J. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. Journal of Membrane Science, 2015, 480: 11–19

    CAS  Google Scholar 

  170. Khan A L, Klaysom C, Gahlaut A, Li X, Vankelecom I F. SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations. Journal of Materials Chemistry, 2012, 22(37): 20057–20064

    CAS  Google Scholar 

  171. Khan A L, Klaysom C, Gahlaut A, Vankelecom I F. Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO2 separation. Journal of Membrane Science, 2013, 436: 145–153

    CAS  Google Scholar 

  172. Li S, Fan C Q. High-flux SAPO-34 membrane for CO2/N2 separation. Industrial & Engineering Chemistry Research, 2010, 49(9): 4399–4404

    CAS  Google Scholar 

  173. Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials & Interfaces, 2015, 7(9): 5528–5537

    CAS  Google Scholar 

  174. Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. Journal of Membrane Science, 2015, 495: 72–80

    CAS  Google Scholar 

  175. Li X, Ma L, Zhang H, Wang S, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B. Synergistic effect ofcombining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479: 1–10

    Google Scholar 

  176. Lin R, Ge L, Liu S, Rudolph V, Zhu Z. Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(27): 14750–14757

    CAS  Google Scholar 

  177. Loloei M, Omidkhah M, Moghadassi A, Amooghin A E. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. International Journal of Greenhouse Gas Control, 2015, 39: 225–235

    CAS  Google Scholar 

  178. Mahmoudi A, Asghari M, Zargar V. CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 2015, 23: 238–242

    CAS  Google Scholar 

  179. Moghadassi A, Rajabi Z, Hosseini S, Mohammadi M. Preparation and characterization of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membrane for CO2 separation. Separation Science and Technology, 2013, 48(8): 1261–1271

    CAS  Google Scholar 

  180. Mohshim D F, Mukhtar H, Man Z. The effect of incorporating ionic liquid into polyethersulfone-SAPO-34 based mixed matrix membrane on CO2 gas separation performance. Separation and Purification Technology, 2014, 135: 252–258

    CAS  Google Scholar 

  181. Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255

    CAS  Google Scholar 

  182. Peydayesh M, Asarehpour S, Mohammadi T, Bakhtiari O. Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2013, 91(7): 1335–1342

    CAS  Google Scholar 

  183. Rodenas T, Van Dalen M, García Pérez E, Serra Crespo P, Zornoza B, Kapteijn F, Gascon J. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53 (Al)@ PI. Advanced Functional Materials, 2014, 24(2): 249–256

    CAS  Google Scholar 

  184. Rodenas T, Van Dalen M, Serra Crespo P, Kapteijn F, Gascon J. Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2014, 192: 35–42

    CAS  Google Scholar 

  185. Roh D K, Kim S J, Chi W S, Kim J K, Kim J H. Dual-functionalized mesoporous TiO2 hollow nanospheres for improved CO2 separation membranes. Chemical Communications, 2014, 50(43): 5717–5720

    CAS  PubMed  Google Scholar 

  186. Thompson J A, Vaughn J T, Brunelli N A, Koros W J, Jones C W, Nair S. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous and Mesoporous Materials, 2014, 192: 43–51

    CAS  Google Scholar 

  187. Xin Q, Wu H, Jiang Z, Li Y, Wang S, Li Q, Li X, Lu X, Cao X, Yang J. SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467: 23–35

    CAS  Google Scholar 

  188. Xing R, Ho W W. Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 2011, 367(1–2): 91–102

    CAS  Google Scholar 

  189. Yilmaz G, Keskin S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4 and H2 separations using molecular simulations. Industrial & Engineering Chemistry Research, 2012, 51(43): 14218–14228

    CAS  Google Scholar 

  190. Zhang L, Hu Z, Jiang J. Metal-organic framework/polymer mixed-matrix membranes for H2/CO2 separation: a fully atomistic simulation study. Journal of Physical Chemistry C, 2012, 116(36): 19268–19277

    CAS  Google Scholar 

  191. Zhao D, Ren J, Li H, Hua K, Deng M. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234

    CAS  Google Scholar 

  192. Zhao H Y, Cao Y M, Ding X L, Zhou M Q, Liu J H, Yuan Q. Poly (ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO2. Journal of Membrane Science, 2008, 320(1–2): 179–184

    CAS  Google Scholar 

  193. Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M A. Development and performance prediction of polyethersulfone-carbon molecular sieve mixed matrix membrane for CO2/CH4 separation. Chemical Engineering Transactions, 2015, 45: 1417–1422

    Google Scholar 

  194. Rabiee H, Alsadat S M, Soltanieh M, Mousavi S A, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239

    CAS  Google Scholar 

  195. Rezaei M, Ismail A F, Bakeri G, Hashemifard S, Matsuura T. Effect of general montmorillonite and cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO2 absorption. Chemical Engineering Journal, 2015, 260: 875–885

    CAS  Google Scholar 

  196. Seoane B, Coronas J, Gascon I, Benavides M E, Karvan O, Caro J, Kapteijn F, Gascon J. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chemical Society Reviews, 2015, 44(8): 2421–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Sorribas S, Comesaña Gándara B, Lozano A E, Zornoza B, Téllez C, Coronas J. Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO2/CH4 gas separation. Royal Society of Chemistry Advances, 2015, 5(124): 102392–102398

    CAS  Google Scholar 

  198. Alavi S A, Kargari A, Sanaeepur H, Karimi M. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations. Research on Chemical Intermediates, 2017, 43(5): 2959–2984

    CAS  Google Scholar 

  199. Amooghin A E, Omidkhah M, Sanaeepur H, Kargari A. Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. Journal of Energy Chemistry, 2016, 25(3): 450–462

    Google Scholar 

  200. Dong X, Liu Q, Huang A. Highly permselective MIL-68 (Al)/matrimid mixed matrix membranes for CO2/CH4 separation. Journal of Applied Polymer Science, 2016, 133(22): 43485

    Google Scholar 

  201. Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S. Synthesis and characterization of poly(ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific Journal of Chemical Engineering, 2016, 11(4): 522–532

    CAS  Google Scholar 

  202. Kang Z, Peng Y, Qian Y, Yuan D, Addicoat M A, Heine T, Hu Z, Tee L, Guo Z, Zhao D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chemistry of Materials, 2016, 28(5): 1277–1285

    CAS  Google Scholar 

  203. Kertik A, Khan A L, Vankelecom I F. Mixed matrix membranes prepared from non-dried MOFs for CO2/CH4 separations. Royal Society of Chemistry Advances, 2016, 6(115): 114505–114512

    CAS  Google Scholar 

  204. Kim J, Choi J, Soo Kang Y, Won J. Matrix effect ofmixed-matrix membrane containing CO2-selective MOFs. Journal of Applied Polymer Science, 2016, 133(1): n/a

    Google Scholar 

  205. Kim J, Fu Q, Scofield J M, Kentish S E, Qiao G G. Ultra-thin film composite mixed matrix membranes incorporating iron (III)-dopamine nanoparticles for CO2 separation. Nanoscale, 2016, 8(15): 8312–8323

    CAS  PubMed  Google Scholar 

  206. Kim J, Fu Q, Xie K, Scofield J M, Kentish S E, Qiao G G. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515: 54–62

    CAS  Google Scholar 

  207. Kim S J, Chi W S, Jeon H, Kim J H, Patel R. Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO2 for CO2 capture. Journal of Membrane Science, 2016, 508: 62–72

    CAS  Google Scholar 

  208. Koolivand H, Sharif A, Chehrazi E, Kashani M R, Paran S M R. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO2/CH4 separation: a comparison between glassy and rubbery polymer matrices. Polymer Science, Series A, 2016, 58(5): 801–809

    CAS  Google Scholar 

  209. Xin Q, Li Z, Li C, Wang S, Jiang Z, Wu H, Zhang Y, Yang J, Cao X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6629–6641

    CAS  Google Scholar 

  210. Brunetti A, Cersosimo M, Kim J S, Dong G, Fontananova E, Lee Y M, Drioli E, Barbieri G. Thermally rearranged mixed matrix membranes for CO2 separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26

    CAS  Google Scholar 

  211. Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223

    CAS  Google Scholar 

  212. Galaleldin S, Mannan H, Mukhtar H. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 130017

    Google Scholar 

  213. Jusoh N, Yeong Y F, Lau K K, Shariff A M. Transport properties of mixed matrix membranes encompassing zeolitic imidazolate framework 8 (ZIF-8) nanofiller and 6FDA-durene polymer: optimization of process variables for the separation of CO2 from CH4. Journal of Cleaner Production, 2017, 149: 80–95

    CAS  Google Scholar 

  214. Khalilinejad I, Kargari A, Sanaeepur H. Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 2017, 71(4): 803–818

    CAS  Google Scholar 

  215. Khosravi T, Omidkhah M, Kaliaguine S, Rodrigue D. Amine-functionalized CuBTC/poly (ether-b-amide-6)(Pebax® MH 1657) mixed matrix membranes for CO2/CH4 separation. Canadian Journal of Chemical Engineering, 2017, 95(10): 2024–2033

    CAS  Google Scholar 

  216. Krea M, Roizard D, Favre E. Copoly (alkyl ether imide) membranes as promising candidates for CO2 capture applications. Separation and Purification Technology, 2016, 161: 53–60

    CAS  Google Scholar 

  217. Liu Y, Li X, Qin Y, Guo R, Zhang J. Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO2 separation. Journal of Applied Polymer Science, 2017, 134(10): 44564

    Google Scholar 

  218. Martin Gil V, López A, Hrabanek P, Mallada R, Vankelecom I, Fila V. Study of different titanosilicate (TS-1 and ETS-10)as fillers for mixed matrix membranes for CO2/CH4 gas separation applications. Journal of Membrane Science, 2017, 523: 24–35

    CAS  Google Scholar 

  219. Nematollahi M H, Dehaghani A H S, Abedini R. CO2/CH4 separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles. Korean Journal of Chemical Engineering, 2016, 33(2): 657–665

    CAS  Google Scholar 

  220. Nematollahi M H, Dehaghani A H S, Pirouzfar V, Akhondi E. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2. Macro-molecular Research, 2016, 24(9): 782–792

    CAS  Google Scholar 

  221. Nguyen T H, Gong H, Lee S S, Bae T H. Amine-appended hierarchical Ca—a zeolite for enhancing CO2/CH4 selectivity of mixed-matrix membranes. ChemPhysChem, 2016, 17(20): 3165–3169

    CAS  PubMed  Google Scholar 

  222. Nordin NAHM, Ismail A F, Misdan N, Nazri NAM. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. in AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020091

    Google Scholar 

  223. Park C H, Lee J H, Jang E, Lee K B, Kim J H. MgCO3-crystal-containing mixed matrix membranes with enhanced CO2 perms-electivity. Chemical Engineering Journal, 2017, 307: 503–512

    CAS  Google Scholar 

  224. Quan S, Li S W, Xiao Y C, Shao L. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. International Journal of Greenhouse Gas Control, 2017, 56: 22–29

    CAS  Google Scholar 

  225. Rahmani M, Kazemi A, Talebnia F. Matrimid mixed matrix membranes for enhanced CO2/CH4 separation. Journal of Polymer Engineering, 2016, 36(5): 499–511

    CAS  Google Scholar 

  226. Sanaeepur H, Kargari A, Nasernejad B, Amooghin A E, Omidkhah M. A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 403–413

    CAS  Google Scholar 

  227. Sánchez Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53

    Google Scholar 

  228. Sánchez Laínez J, Zornoza B, Téllez C, Coronas J. On the chemical filler-polymer interaction of nano-and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(37): 14334–14341

    Google Scholar 

  229. Shamsabadi A A, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M. Efficient CO2-removal using novel mixed-matrix membranes with modified TiO2 nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(8): 4011–4025

    CAS  Google Scholar 

  230. Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165

    CAS  Google Scholar 

  231. Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(8): 2843–2852

    CAS  Google Scholar 

  232. Shen Y, Wang H, Zhang X, Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378

    CAS  Google Scholar 

  233. Shin H, Chi W S, Bae S, Kim J H, Kim J. High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53: 127–133

    CAS  Google Scholar 

  234. Sumer Z, Keskin S. Computational screening of MOF-based mixed matrix membranes for CO2/N2 Separations. Journal of Nanomaterials, 2016, 2016: 1–12

    Google Scholar 

  235. Tseng H H, Chuang H W, Zhuang G L, Lai W H, Wey M Y. Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. International Journal of Hydrogen Energy, 2017, 42(16): 11379–11391

    CAS  Google Scholar 

  236. Waheed N, Mushtaq A, Tabassum S, Gilani M A, Ilyas A, Ashraf F, Jamal Y, Bilad M R, Khan A U, Khan A L. Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology, 2016, 170: 122–129

    CAS  Google Scholar 

  237. Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977

    CAS  Google Scholar 

  238. Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75

    CAS  Google Scholar 

  239. Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508: 84–93

    CAS  Google Scholar 

  240. Xin Q, Zhang Y, Shi Y, Ye H, Lin L, Ding X, Zhang Y, Wu H, Jiang Z. Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514: 73–85

    CAS  Google Scholar 

  241. Zhang H, Guo R, Hou J, Wei Z, Li X. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation. ACS Applied Materials & Interfaces, 2016, 8(42): 29044–29051

    CAS  Google Scholar 

  242. Zhao D, Ren J, Wang Y, Qiu Y, Li H, Hua K, Li X, Ji J, Deng M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. Journal of Membrane Science, 2017, 521: 104–113

    CAS  Google Scholar 

  243. Li Y, Chung T S. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 2010, 35(19): 10560–10568

    CAS  Google Scholar 

  244. Ebrahimi S, Mollaiy Berneti S, Asadi H, Peydayesh M, Akhlaghian F, Mohammadi T. PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling. Chemical Engineering Research & Design, 2016, 109: 647–656

    CAS  Google Scholar 

  245. Xiong L, Gu S, Jensen K O, Yan Y S. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation. ChemSusChem, 2014, 7(1): 114–116

    CAS  PubMed  Google Scholar 

  246. Zhou T, Luo L, Hu S, Wang S, Zhang R, Wu H, Jiang Z, Wang B, Yang J. Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2015, 489: 1–10

    CAS  Google Scholar 

  247. Cui Z, DeMontigny D. Part 7: a review of CO2 capture using hollow fiber membrane contactors. Carbon Management, 2013, 4(1): 69–89

    CAS  Google Scholar 

  248. Ahmad M Z, Navarro M, Lhotka M, Zornoza B, Téllez C, Fila V, Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474

    Google Scholar 

  249. Cao L, Tao K, Huang A, Kong C, Chen L. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chemical Communications, 2013, 49(76): 851–8515

    Google Scholar 

  250. Dong L, Sun Y, Zhang C, Han D, Bai Y, Chen M. Efficient CO2 capture by metallo-supramolecular polymers as fillers to fabricate a polymeric blend membrane. Royal Society of Chemistry Advances, 2015, 5(83): 67658–67661

    CAS  Google Scholar 

  251. Erucar I, Keskin S. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations. Industrial & Engineering Chemistry Research, 2011, 50(22): 12606–12616

    CAS  Google Scholar 

  252. Huang A, Chen Y, Liu Q, Wang N, Jiang J, Caro J. Synthesis of highly hydrophobic and permselective metal-organic framework Zn (BDC)(TED) 0.5 membranes for H2/CO2 separation. Journal of Membrane Science, 2014, 454: 126–132

    CAS  Google Scholar 

  253. Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J. Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes. Journal of Physical Chemistry C, 2016, 120(45): 2606–26066

    Google Scholar 

  254. Monteiro B, Nabais A R, Almeida Paz F A, Cabrita L, Branco L C, Marrucho I M, Neves L A, Pereira C C. Membranes with a low loading of metal-organic framework-supported ionic liquids for CO2/N2 separation in CO2 capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162

    CAS  Google Scholar 

  255. Morris C G, Jacques N M, Godfrey H G, Mitra T, Fritsch D, Lu Z, Murray C A, Potter J, Cobb T M, Yuan F, Tang C C, Yang S, Schröder M. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Chemical Science (Cambridge), 2017, 8(4): 3239–3248

    CAS  Google Scholar 

  256. Nordin NAHM, Racha S M, Matsuura T, Misdan N, Sani N A A, Ismail A F, Mustafa A. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120

    Google Scholar 

  257. Rui Z, James J B, Kasik A, Lin Y. Metal-organic framework membrane process for high purity CO2 production. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(11): 3836–3841

    CAS  Google Scholar 

  258. Watanabe T, Keskin S, Nair S, Sholl D S. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu (hfipbb)(H2 hfipbb) 0.5. Physical Chemistry Chemical Physics, 2009, 11(48): 11389–11394

    CAS  PubMed  Google Scholar 

  259. Wu D, Maurin G, Yang Q, Serre C, Jobic H, Zhong C. Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(6): 1657–1661

    CAS  Google Scholar 

  260. Yin H, Wang J, Xie Z, Yang J, Bai J, Lu J, Zhang Y, Yin D, Lin J Y. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N2 separation. Chemical Communications, 2014, 50(28): 3699–3701

    CAS  PubMed  Google Scholar 

  261. Kelman S, Lin H, Sanders E S, Freeman B D. CO2/C2H6 separation using solubility selective membranes. Journal of Membrane Science, 2007, 305(1–2): 57–68

    CAS  Google Scholar 

  262. Low B T, Xiao Y, Chung T S, Liu Y. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation. Macromolecules, 2008, 41(4): 1297–1309

    CAS  Google Scholar 

  263. Modigell M, Schumacher M, Teplyakov V V, Zenkevich V B. A membrane contactor for efficient CO2 removal in biohydrogen production. Desalination, 2008, 224(1–3): 186–190

    CAS  Google Scholar 

  264. Yave W, Car A, Wind J, Peinemann K V. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology, 2010, 21(39): 395301

    PubMed  Google Scholar 

  265. Zhang Y, Wang Z, Wang S. Synthesis and characteristics of novel fixed carrier membrane for CO2 separation. Chemistry Letters, 2002, 31(4): 430–431

    Google Scholar 

  266. Khan A L, Li X, Vankelecom I F. Mixed-gas CO2/CH4 and CO2/N2 separation with sulfonated PEEK membranes. Journal of Membrane Science, 2011, 372(1–2): 87–96

    CAS  Google Scholar 

  267. Kim T J, Uddin M W, Sandru M, Hägg M B. The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes. Energy Procedia, 2011, 4: 737–744

    CAS  Google Scholar 

  268. Zhang L, Xiao Y, Chung T S, Jiang J. Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: a combination of experiment and simulation study. Polymer, 2010, 51(19): 4439–4447

    CAS  Google Scholar 

  269. Chang J, Kang S W. CO2 separation through poly(vinylidene fluoride-co-hexafluoropropylene) membrane by selective ion channel formed by tetrafluoroboric acid. Chemical Engineering Journal, 2016, 306: 1189–1192

    CAS  Google Scholar 

  270. Fu X, Li X, Guo R, Zhang J, Cao X. Block copolymer membranes based on polyetheramine and methyl-containing polyisophthalamides designed for efficient CO2 separation. High Performance Polymers, 2018, 30(9): 1064–1074

    CAS  Google Scholar 

  271. Ghadiri M, Marjani A, Shirazian S. Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 13: 1–8

    CAS  Google Scholar 

  272. Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222

    CAS  Google Scholar 

  273. Kwisnek L, Heinz S, Wiggins J S, Nazarenko S. Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation. Journal of Membrane Science, 2011, 369(1–2): 429–436

    CAS  Google Scholar 

  274. Lee J H, Jung J P, Jang E, Lee K B, Hwang Y J, Min B K, Kim J H. PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. Journal of Membrane Science, 2016, 518: 21–30

    CAS  Google Scholar 

  275. Li Y, Xin Q, Wang S, Tian Z, Wu H, Liu Y, Jiang Z. Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO2 capture. Chemical Communications, 2015, 51(10): 1901–1904

    CAS  PubMed  Google Scholar 

  276. Lindqvist K, Roussanaly S, Anantharaman R. Multi-stage membrane processes for CO2 capture from cement industry. Energy Procedia, 2014, 63: 6476–6483

    CAS  Google Scholar 

  277. Ma Z, Qiao Z, Wang Z, Cao X, He Y, Wang J, Wang S. CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups. Royal Society of Chemistry Advances, 2014, 4(41): 21313–21317

    CAS  Google Scholar 

  278. Mondal A, Barooah M, Mandal B. Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Greenhouse Gas Control, 2015, 39: 27–28

    CAS  Google Scholar 

  279. Mondal A, Mandal B. Synthesis and characterization of cross-linked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxy-methyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. Journal of Membrane Science, 2013, 446: 383–394

    CAS  Google Scholar 

  280. Ricci E, Minelli M, De Angelis M G. A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO2 capture: the case of CO2/CH4 mixture in Matrimid®. Journal of Membrane Science, 2017, 539: 88–100

    CAS  Google Scholar 

  281. Liu S, Liu G, Wei W, Xiangli F, Jin W. Ceramic supported PDMS and PEGDA composite membranes for CO2 separation. Chinese Journal of Chemical Engineering, 2013, 21(4): 348–356

    CAS  Google Scholar 

  282. Sandru M, Kim T J, Capala W, Huijbers M, Hägg M B. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480

    CAS  Google Scholar 

  283. Tseng H H, Itta A K, Weng T H, Li Y L. SBA-15/CMS composite membrane for H2 purification and CO2 capture: effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180: 270–279

    CAS  Google Scholar 

  284. Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Guiver M D. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 2016, 9(6): 1863–1890

    CAS  Google Scholar 

  285. Zainab G, Iqbal N, Babar A A, Huang C, Wang X, Yu J, Ding B. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 2017, 6: 41–47

    Google Scholar 

  286. Kim K J, Park S H, So W W, Ahn D J, Moon S J. CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. Journal of Membrane Science, 2003, 211(1): 41–49

    CAS  Google Scholar 

  287. Okabe K, Nakamura M, Mano H, Teramoto M, Yamada K. Separation and recovery of CO2 by membrane/absorption hybrid method. In: Proceedings of the Eighth Intenational Conference on Greenhouse Gas Control Technologies. Amsterdam: Elsevier, 2006, 409–412

    Google Scholar 

  288. Francisco G J, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. Journal of Membrane Science, 2007, 303(1–2): 54–63

    CAS  Google Scholar 

  289. Sridhar S, Suryamurali R, Smitha B, Aminabhavi T. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 297(1–3): 267–274

    CAS  Google Scholar 

  290. Kai T, Kouketsu T, Duan S, Kazama S, Yamada K. Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas. Separation and Purification Technology, 2008, 63(3): 524–530

    CAS  Google Scholar 

  291. Kosuri M R, Koros W J. Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO2 separations. Journal of Membrane Science, 2008, 320(1–2): 65–72

    CAS  Google Scholar 

  292. Kosuri M R, Koros W J. Asymmetric hollow fiber membranes for separation of CO2 from hydrocarbons and fluorocarbons at high-pressure conditions relevant to C2F4 polymerization. Industrial & Engineering Chemistry Research, 2009, 48(23): 10577–10583

    CAS  Google Scholar 

  293. Safari M, Ghanizadeh A, Montazer Rahmati M M. Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. International Journal of Greenhouse Gas Control, 2009, 3(1): 3–10

    CAS  Google Scholar 

  294. Xing R, Ho W W. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 654–662

    CAS  Google Scholar 

  295. Yave W, Car A, Funari S S, Nunes S P, Peinemann K V. CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 2009, 43(1): 326–333

    Google Scholar 

  296. Cong H, Yu B. Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation. Industrial & Engineering Chemistry Research, 2010, 49(19): 9363–9369

    CAS  Google Scholar 

  297. Park H B, Han S H, Jung C H, Lee Y M, Hill A J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24

    CAS  Google Scholar 

  298. Reijerkerk S R, Knoef M H, Nijmeijer K, Wessling M. Poly (ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. Journal of Membrane Science, 2010, 352(1–2): 126–135

    CAS  Google Scholar 

  299. Yave W, Szymczyk A, Yave N, Roslaniec Z. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: a new membrane material for CO2 separation. Journal of Membrane Science, 2010, 362(1–2): 407–416

    CAS  Google Scholar 

  300. Yu X, Wang Z, Wei Z, Yuan S, Zhao J, Wang J, Wang S. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362(1–2): 265–278

    CAS  Google Scholar 

  301. Khan A L, Li X, Vankelecom I F. SPEEK/Matrimid blend membranes for CO2 separation. Journal of Membrane Science, 2011, 380(1–2): 55–62

    CAS  Google Scholar 

  302. Peters L, Hussain A, Follmann M, Melin T, Hägg M B. CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chemical Engineering Journal, 2011, 172(2–3): 952–960

    CAS  Google Scholar 

  303. Reijerkerk S R, Jordana R, Nijmeijer K, Wessling M. Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 2011, 5(1): 26–36

    CAS  Google Scholar 

  304. Reijerkerk S R, Wessling M, Nijmeijer K. Pushing the limits of block copolymer membranes for CO2 separation. Journal of Membrane Science, 2011, 378(1–2): 479–484

    CAS  Google Scholar 

  305. Sanaeepur H, Amooghin A E, Moghadassi A, Kargari A. Preparation and characterization of acrylonitrile-butadiene-styrene/poly(vinyl acetate) membrane for CO2 removal. Separation and Purification Technology, 2011, 80(3): 499–508

    CAS  Google Scholar 

  306. Spadaccini C M, Mukerjee E V, Letts S A, Maiti A, O’Brien K C. Ultrathin polymer membranes for high throughput CO2 capture. Energy Procedia, 2011, 4: 731–736

    CAS  Google Scholar 

  307. Xia J, Liu S, Chung T S. Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes. Macromolecules, 2011, 44(19): 7727–7736

    CAS  Google Scholar 

  308. Ahmad F, Lau K K, Shariff A M, Murshid G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers & Chemical Engineering, 2012, 36: 119–128

    CAS  Google Scholar 

  309. Bengtson G, Neumann S, Filiz V. Optimization of PIM-membranes for separation of CO2. Procedia Engineering, 2012, 44: 796–798

    Google Scholar 

  310. Han S H, Kwon H J, Kim K Y, Seong J G, Park C H, Kim S, Doherty C M, Thornton A W, Hill A J, Lozano A E, Berchtold K A, Lee Y M. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Physical Chemistry Chemical Physics, 2012, 14(13): 4365–4373

    CAS  PubMed  Google Scholar 

  311. Kim S, Lee Y M. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation, in nanotechnology for sustainable development. New York: Springer, 2012, 265–275

    Google Scholar 

  312. Uddin M W, Hägg M B. Natural gas sweetening—the effect on CO2-CH4 separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. Journal of Membrane Science, 2012, 423: 143–149

    Google Scholar 

  313. Hu T, Dong G, Li H, Chen V. Improved CO2 separation performance with additives of PEG and PEG-PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide) membranes. Journal of Membrane Science, 2013, 432: 13–24

    CAS  Google Scholar 

  314. Kai T, Taniguchi I, Duan S, Chowdhury F A, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S. Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture. Energy Procedia, 2013, 37: 961–968

    CAS  Google Scholar 

  315. Kim T J, Vrálstad H, Sandru M, Hägg M B. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. Journal of Membrane Science, 2013, 428: 218–224

    CAS  Google Scholar 

  316. Li S, Wang Z, Zhang C, Wang M, Yuan F, Wang J, Wang S. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436: 121–131

    CAS  Google Scholar 

  317. Nasir R, Mukhtar H, Man Z, Mohshim D F. Synthesis, characterization and performance study of newly developed amine polymeric membrane (APM) for carbon dioxide (CO2) removal. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear. Materials and Metallurgical Engineering, 2013, 7(9): 670–673

    Google Scholar 

  318. Rahman M M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan M M, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297

    CAS  Google Scholar 

  319. Wang M, Wang Z, Li S, Zhang C, Wang J, Wang S. A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551

    CAS  Google Scholar 

  320. Ahmadpour E, Shamsabadi A A, Behbahani R M, Aghajani M, Kargari A. Study of CO2 separation with PVC/Pebax composite membrane. Journal of Natural Gas Science and Engineering, 2014, 21: 518–523

    CAS  Google Scholar 

  321. Constantinou A, Barrass S, Gavriilidis A. CO2 absorption in polytetrafluoroethylene membrane microstructured contactor using aqueous solutions of amines. Industrial & Engineering Chemistry Research, 2014, 53(22): 9236–9242

    CAS  Google Scholar 

  322. Hussain A, Nasir H, Ahsan M. Process design analyses of CO2 capture from natural gas by polymer membrane. Journal of the Chemical Society of Pakistan, 2014, 36(3): 411–421

    CAS  Google Scholar 

  323. Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M, Kniep J, Merkel T C, Wu T, Lambrecht R C. CO2-selective membranes for hydrogen production and CO2 capture-Part I: Membrane development. Journal of Membrane Science, 2014, 457: 149–161

    CAS  Google Scholar 

  324. Mondal A, Mandal B. Novel CO2-selective cross-linked poly(vinyl alcohol)/polyvinylpyrrolidone blend membrane containing amine carrier for CO2-N2 separation: synthesis, characterization, and gas permeation study. Industrial & Engineering Chemistry Research, 2014, 53(51): 19736–19746

    CAS  Google Scholar 

  325. Mondal A, Mandal B. CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 2014, 460: 126–138

    CAS  Google Scholar 

  326. Nabian N, Ghoreyshi A, Rahimpour A, Shakeri M. Effect of polymer concentration on the structure and performance of polysulfone flat membrane for CO2 absorption in membrane contactor. Iranian Journal of Chemical Engineering, 2014, 11(2): 79

    Google Scholar 

  327. Salih A A, Yi C, Peng H, Yang B, Yin L, Wang W. Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO2 separation. Journal of Membrane Science, 2014, 472: 110–118

    CAS  Google Scholar 

  328. Wang L, Li Y, Li S, Ji P, Jiang C. Preparation of composite poly (ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725

    Google Scholar 

  329. Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70

    CAS  Google Scholar 

  330. Scholes C A, Ribeiro C P, Kentish S E, Freeman B D. Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation. Separation and Purification Technology, 2014, 124: 134–140

    CAS  Google Scholar 

  331. Wang Z, Fang M, Ma Q, Zhao Z, Wang T, Luo Z. Membrane stripping technology for CO2 desorption from CO2-rich absorbents with low energy consumption. Energy Procedia, 2014, 63: 765–772

    CAS  Google Scholar 

  332. Zhou J, Tran M M, Haldeman A T, Jin J, Wagener E H, Husson S M. Perfluorocyclobutyl polymer thin-film composite membranes for CO2 separations. Journal of Membrane Science, 2014, 450: 478–486

    CAS  Google Scholar 

  333. Gilassi S, Rahmanian N. Mathematical modelling and numerical simulation of CO2/CH4 separation in a polymeric membrane. Applied Mathematical Modelling, 2015, 39(21): 6599–6611

    Google Scholar 

  334. Khalilinejad I, Sanaeepur H, Kargari A. Preparation of poly (ether-6-block amide)/PVC thin film composite membrane for CO2 separation: effect of top layer thickness and operating parameters. Journal of Membrane Science and Research, 2015, 1(3): 124–129

    Google Scholar 

  335. Kim S J, Jeon H, Kim D J, Kim J H. High-performance polymer membranes with multi-functional amphiphilic micelles for CO2 capture. ChemSusChem, 2015, 8(22): 3783–3792

    CAS  PubMed  Google Scholar 

  336. Li P, Wang Z, Liu Y, Zhao S, Wang J, Wang S. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances. Journal of Membrane Science, 2015, 476: 243–255

    CAS  Google Scholar 

  337. Li P, Wang Z, Li W, Liu Y, Wang J, Wang S. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(28): 15481–15493

    CAS  Google Scholar 

  338. Liao J, Wang Z, Gao C, Wang M, Yan K, Xie X, Zhao S, Wang J, Wang S. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16746–16761

    CAS  Google Scholar 

  339. Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M Z A. Effect of fixed carbon molecular sieve (CMS) loading and various diethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO2/CH4 separation. Royal Society of Chemistry Advances, 2015, 5(75): 60814–60822

    CAS  Google Scholar 

  340. Park C H, Lee J H, Jung J P, Jung B, Kim J H. A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. Journal of Membrane Science, 2015, 492: 452–460

    CAS  Google Scholar 

  341. Park S, Lee A S, Do Y S, Hwang S S, Lee Y M, Lee J H, Lee J S. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO2 removal. Chemical Communications, 2015, 51(83): 15308–15311

    CAS  PubMed  Google Scholar 

  342. Scofield J M, Gurr P A, Kim J, Fu Q, Halim A, Kentish S E, Qiao G G. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)-poly(ethylene glycol) copolymer additives for CO2 separation. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(12): 1500–1511

    CAS  Google Scholar 

  343. Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. Journal of Membrane Science, 2015, 475: 175–183

    CAS  Google Scholar 

  344. Adewole J K, Ahmad A L. Process modeling and optimization studies of high pressure membrane separation of CO2 from natural gas. Korean Journal of Chemical Engineering, 2016, 33(10): 2998–3010

    CAS  Google Scholar 

  345. Chen Y, Ho W W. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 2016, 514: 376–384

    CAS  Google Scholar 

  346. Karamouz F, Maghsoudi H, Yegani R. Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2016, 35: 980–985

    CAS  Google Scholar 

  347. Mosleh S, Mozdianfard M, Hemmati M, Khanbabaei G. Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation. Journal of Polymer Research, 2016, 23(6): 120

    Google Scholar 

  348. Scofield J M, Gurr P A, Kim J, Fu Q, Kentish S E, Qiao G G. Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499: 191–200

    CAS  Google Scholar 

  349. Solimando X, Lherbier C, Babin J, Arnal Herault C, Romero E, Acherar S, Jamart Gregoire B, Barth D, Roizard D, Jonquieres A. Pseudopeptide bioconjugate additives for CO2 separation membranes. Polymer International, 2016, 65(12): 1464–1473

    Google Scholar 

  350. Wu D, Zhao L, Vakharia V K, Salim W, Ho W W. Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation: from lab to pilot scale. Journal of Membrane Science, 2016, 510: 58–71

    CAS  Google Scholar 

  351. Azizi N, Arzani M, Mahdavi H R, Mohammadi T. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470

    CAS  Google Scholar 

  352. Azizi N, Mohammadi T, Behbahani R M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51

    CAS  Google Scholar 

  353. Azizi N, Mohammadi T, Behbahani R M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465

    Google Scholar 

  354. Isfahani A P, Sadeghi M, Wakimoto K, Gibbons A H, Bagheri R, Sivaniah E, Ghalei B. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. Journal of Membrane Science, 2017, 542: 143–149

    CAS  Google Scholar 

  355. Jung J P, Park C H, Lee J H, Bae Y S, Kim J H. Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313: 1615–1622

    CAS  Google Scholar 

  356. Prasad B, Mandal B. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane. Journal of Applied Polymer Science, 2017, 134(34): 45206

    Google Scholar 

  357. Taniguchi I, Wada N, Kinugasa K, Higa M. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine). Open Physics, 2017, 15(1): 662–670

    CAS  Google Scholar 

  358. Tong Z, Ho W W. New sterically hindered polyvinylamine membranes for CO2 separation and capture. Journal of Membrane Science, 2017, 543: 202–211

    CAS  Google Scholar 

  359. Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Industrial & Engineering Chemistry Research, 2007, 46(21): 6989–6997

    CAS  Google Scholar 

  360. Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. Journal of Membrane Science, 2010, 350(1–2): 117–123

    CAS  Google Scholar 

  361. Junaidi M, Khoo C, Leo C, Ahmad A. The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous and Mesoporous Materials, 2014, 192: 52–59

    CAS  Google Scholar 

  362. Kim J, Abouelnasr M, Lin L C, Smit B. Large-scale screening of zeolite structures for CO2 membrane separations. Journal of the American Chemical Society, 2013, 135(20): 7545–7552

    CAS  PubMed  Google Scholar 

  363. Korelskiy D, Grahn M, Ye P, Zhou M, Hedlund J. A study of CO2/CO separation by sub-micron b-oriented MFI membranes. Royal Society of ChemistryAdvances, 2016, 6(70): 65475–65482

    CAS  Google Scholar 

  364. Kosinov N, Auffret C, Gücüyener C, Szyja B M, Gascon J, Kapteijn F, Hensen E J. High flux high-silica SSZ-13 membrane for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 13083–13092

    CAS  Google Scholar 

  365. Lai L S, Yeong Y F, Lau K K, Shariff A M. Single and binary CO2/CH4 separation of a zeolitic imidazolate framework-8 membrane. Chemical Engineering & Technology, 2017, 40(6): 1031–1042

    CAS  Google Scholar 

  366. Li X, Remias J E, Neathery J K, Liu K. Liu K. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. Journal of Membrane Science, 2011, 366(1–2): 220–228

    CAS  Google Scholar 

  367. Maghsoudi H, Soltanieh M. Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. Journal of Membrane Science, 2014, 470: 159–165

    CAS  Google Scholar 

  368. Mizukami K, Takaba H, Kobayashi Y, Oumi Y, Belosludov R V, Takami S, Kubo M, Miyamoto A. Molecular dynamics calculations of CO2/N2 mixture through the NaY type zeolite membrane. Journal of Membrane Science, 2001, 188(1): 21–28

    CAS  Google Scholar 

  369. Sandström L, Sjöberg E, Hedlund J. Very high flux MFI membrane for CO2 separation. Journal of Membrane Science, 2011, 380(1–2): 232–240

    Google Scholar 

  370. Sun C, Srivastava D J, Grandinetti P J, Dutta P K. Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Microporous and Mesoporous Materials, 2016, 230: 208–216

    CAS  Google Scholar 

  371. Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Aminofunctionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Advanced Materials, 2017, 29(32): 1606999

    Google Scholar 

  372. Yin X, Chu N, Yang J, Wang J, Li Z. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. International Journal of Greenhouse Gas Control, 2013, 15: 55–64

    CAS  Google Scholar 

  373. Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J. A uniformly oriented MFI membrane for improved CO2 separation. Angewandte Chemie International Edition, 2014, 53(13): 3492–3495

    CAS  PubMed  Google Scholar 

  374. Kangas J, Sandström L, Malinen I, Hedlund J, Tanskanen J. Maxwell-Stefan modeling of the separation of H2 and CO2 at high pressure in an MFI membrane. Journal of Membrane Science, 2013, 435: 186–206

    CAS  Google Scholar 

  375. Lee H, Park S C, Roh J S, Moon G H, Shin J E, Kang Y S, Park H B. Metal-organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22500–22505

    CAS  Google Scholar 

  376. An W, Swenson P, Wu L, Waller T, Ku A, Kuznicki S M. Selective separation of hydrogen from C1/C2 hydrocarbons and CO2 through dense natural zeolite membranes. Journal of Membrane Science, 2011, 369(1–2): 414–419

    CAS  Google Scholar 

  377. Banihashemi F, Pakizeh M, Ahmadpour A. CO2 separation using PDMS/ZSM-5 zeolite composite membrane. Separation and Purification Technology, 2011, 79(3): 293–302

    CAS  Google Scholar 

  378. Chew T L, Ahmad A L, Bhatia S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chemical Engineering Journal, 2011, 171(3): 1053–1059

    CAS  Google Scholar 

  379. Hao L, Li P, Yang T, Chung T S. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436: 221–231

    CAS  Google Scholar 

  380. Kwon W T, Kim S R, Kim E B, Bae S Y, Kim Y. H2/CO2 gas separation characteristic of zeolite membrane at high temperature. In: Advanced Materials Research. Zürich, Switzerland: Trans Tech Publications, Ltd., 2007, 267–270

    Google Scholar 

  381. Lai L S, Yeong Y F, Lau K K, Shariff A M. Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(2): 420–431

    CAS  Google Scholar 

  382. Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353(1–2): 36–40

    CAS  Google Scholar 

  383. Ohta Y, Takaba H, Nakao S I. A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO2/N2 separation. Microporous and Mesoporous Materials, 2007, 101(1–2): 319–323

    CAS  Google Scholar 

  384. Song Z, Qiu F, Zaia E W, Wang Z, Kunz M, Guo J, Brady M, Mi B, Urban J J. Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Letters, 2017, 17(11): 6752–6758

    CAS  PubMed  Google Scholar 

  385. Tzialla O, Veziri C, Papatryfon X, Beltsios K, Labropoulos A, Iliev B, Adamova G, Schubert T, Kroon M, Francisco M, Zubeir L F, Romanos G E, Karanikolos G N. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440

    CAS  Google Scholar 

  386. Ramsay J, Kallus S. Zeolite membranes. In: Membrane Science and Technology. Vol 6. Amsterdam: Elsevier, 2000, 373–395

    Google Scholar 

  387. Fan T, Xie W, Ji X, Liu C, Feng X, Lu X. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521

    CAS  Google Scholar 

  388. Hu L, Cheng J, Li Y, Liu J, Zhang L, Zhou J, Cen K. Composites of ionic liquid and amine-modified SAPO-34 improve CO2 separation of CO2-selective polymer membranes. Applied Surface Science, 2017, 410: 249–258

    CAS  Google Scholar 

  389. Iarikov D, Hacarlioglu P, Oyama S. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chemical Engineering Journal, 2011, 166(1): 401–406

    CAS  Google Scholar 

  390. Karousos D S, Labropoulos A I, Sapalidis A, Kanellopoulos N K, Iliev B, Schubert T J, Romanos G E. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chemical Engineering Journal, 2017, 313: 777–790

    CAS  Google Scholar 

  391. Karunakaran M, Villalobos L F, Kumar M, Shevate R, Akhtar F H, Peinemann K V. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(2): 649–656

    CAS  Google Scholar 

  392. Li P, Paul D R, Chung T S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14(4): 1052–1063

    CAS  Google Scholar 

  393. Li P, Pramoda K, Chung T S. CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Industrial & Engineering Chemistry Research, 2011, 50(15): 9344–9353

    CAS  Google Scholar 

  394. Li Y, Rui Z, Xia C, Anderson M, Lin Y. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today, 2009, 148(3–4): 303–309

    CAS  Google Scholar 

  395. Liu Z, Liu C, Li L, Qin W, Xu A. CO2 separation by supported ionic liquid membranes and prediction of separation performance. International Journal of Greenhouse Gas Control, 2016, 53: 79–84

    CAS  Google Scholar 

  396. Lu J G, Ge H, Chen Y, Ren R T, Xu Y, Zhao Y X, Zhao X, Qian H. CO2 capture using a functional protic ionic liquid by membrane absorption. Journal of the Energy Institute, 2017, 90(6): 933–940

    CAS  Google Scholar 

  397. Lu J G, Lu C T, Chen Y, Gao L, Zhao X, Zhang H, Xu Z W. CO2 capture by membrane absorption coupling process: application of ionic liquids. Applied Energy, 2014, 115: 573–581

    CAS  Google Scholar 

  398. Lu S C, Khan A L, Vankelecom I F. Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features. Journal of Membrane Science, 2016, 518: 10–20

    CAS  Google Scholar 

  399. Mannan H, Mohshim D, Mukhtar H, Murugesan T, Man Z, Bustam M. Synthesis, characterization and CO2 separation performance of polyether sulfone/[EMIM][Tf2N] ionic liquid-polymeric membranes (ILPMs). Journal of Industrial and Engineering Chemistry, 2017, 54: 98–106

    CAS  Google Scholar 

  400. Ramli N A, Hashim N A, Aroua M K. Prediction of CO2/O2 absorption selectivity using supported ionic liquid membranes (SILMs) for gas-liquid membrane contactor. Chemical Engineering Communications, 2018, 205(3): 295–310

    CAS  Google Scholar 

  401. Tomé L C, Patinha D J, Freire C S, Rebelo L P N, Marrucho I M. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. Royal Society of Chemistry Advances, 2013, 3(30): 12220–12229

    Google Scholar 

  402. Ur Rehman R, Rafiq S, Muhammad N, Khan A L, Ur Rehman A, TingTing L, Saeed M, Jamil F, Ghauri M, Gu X. Development of ethanolamine-based ionic liquid membranes for efficient CO2/CH4 separation. Journal of Applied Polymer Science, 2017, 134(44): 45395

    Google Scholar 

  403. Yoon K W, Kim H, Kang Y S, Kang S W. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance. Chemical Engineering Journal, 2017, 320: 50–54

    CAS  Google Scholar 

  404. Zhang X M, Tu Z H, Li H, Li L, Wu Y T, Hu X B. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO2. Journal of Membrane Science, 2017, 527: 60–67

    CAS  Google Scholar 

  405. Chen H, Kovvali A, Sirkar K. Selective CO2 Separation from CO2-N2 mixtures by immobilized glycine-Na-glycerol membranes. Industrial & Engineering Chemistry Research, 2000, 39(7): 2447–2458

    CAS  Google Scholar 

  406. Ilyas A, Muhammad N, Gilani M A, Ayub K, Vankelecom I F, Khan A L. Supported protic ionic liquid membrane based on 3-(trimethoxysilyl) propan-1-aminium acetate for the highly selective separation of CO2. Journal of Membrane Science, 2017, 543: 301–309

    CAS  Google Scholar 

  407. Ranjbaran F, Kamio E, Matsuyama H. Ion gel membrane with tunable inorganic/organic composite network for CO2 separation. Industrial & Engineering Chemistry Research, 2017, 56(44): 12763–12772

    CAS  Google Scholar 

  408. Jindaratsamee P, Shimoyama Y, Ito A. Amine/glycol liquid membranes for CO2 recovery form air. Journal of Membrane Science, 2011, 385: 171–176

    Google Scholar 

  409. Hussain A. Three stage membrane process for CO2 capture from natural gas. AA, 2017, 50: 1

    Google Scholar 

  410. Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y. Separation of gaseous mixtures of CO2 and CH4 using a composite microporous glass membrane on ceramic tubing. Journal of Membrane Science, 1988, 39(3): 301–314

    CAS  Google Scholar 

  411. Saha S, Chakma A. Separation of CO2 from gas mixtures with liquid membranes. Energy Conversion and Management, 1992, 33(5–8): 413–420

    CAS  Google Scholar 

  412. Xu L, Zhang L, Chen H. Study on CO2 removal in air by hydrogel membranes. Desalination, 2002, 148(1–3): 309–313

    CAS  Google Scholar 

  413. Jordal K, Bredesen R, Kvamsdal H, Bolland O. Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 2004, 29(9–10): 1269–1278

    CAS  Google Scholar 

  414. Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2004, 241(1): 121–135

    CAS  Google Scholar 

  415. Moon J H, Ahn H, Hyun S H, Lee C H. Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO2/N2,CO2/H2 and CH4/H2 systems. Korean Journal of Chemical Engineering, 2004, 21(2): 477–487

    CAS  Google Scholar 

  416. Li S, Alvarado G, Noble R D, Falconer J L. Effects ofimpurities on CO2/CH4 separations through SAPO-34 membranes. Journal of Membrane Science, 2005, 251(1–2): 59–66

    CAS  Google Scholar 

  417. Li S, Martinek J G, Falconer J L, Noble R D, Gardner T Q. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research, 2005, 44(9): 3220–3228

    CAS  Google Scholar 

  418. Jordal K, Bolland O, Möller B F, Torisson T. Optimization with genetic algorithms of a gas turbine cycle with H2-separating membrane reactor for CO2 capture. International Journal of Green Energy, 2005, 2(2): 167–180

    CAS  Google Scholar 

  419. Sakamoto Y, Nagata K, Yogo K, Yamada K. Preparation and CO2 separation properties of amine-modified mesoporous silica membranes. Microporous and Mesoporous Materials, 2007, 101(1–2): 303–311

    CAS  Google Scholar 

  420. Xiao S, Feng X, Huang R Y. Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 306(1–2): 36–46

    CAS  Google Scholar 

  421. Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H. Selective separation of CO2 by using novel facilitated transport membrane at elevated temperatures and pressures. Journal of Membrane Science, 2007, 291(1–2): 157–164

    CAS  Google Scholar 

  422. Paul S, Ghoshal A K, Mandal B. Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, 2008, 144(3): 352–360

    CAS  Google Scholar 

  423. Kai T, Kazama S, Fujioka Y. Development ofcesium-incorporated carbon membranes for CO2 separation under humid conditions. Journal of Membrane Science, 2009, 342(1–2): 14–21

    CAS  Google Scholar 

  424. Nistor C, Shishatskiy S, Popa M, Nunes S P. CO2 selective membranes based on epoxy silane. Revue Roumaine de Chimie, 2009, 54: 603–610

    CAS  Google Scholar 

  425. Li S, Carreon M A, Zhang Y, Funke H H, Noble R D, Falconer J L. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2010, 352(1–2): 7–13

    CAS  Google Scholar 

  426. Scholes C A, Smith K H, Kentish S E, Stevens G W. CO2 capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755

    CAS  Google Scholar 

  427. Tiscornia I, Kumakiri I, Bredesen R, Téllez C, Coronas J. Microporous titanosilicate ETS-10 membrane for high pressure CO2 separation. Separation and Purification Technology, 2010, 73(1): 8–12

    CAS  Google Scholar 

  428. Favre N, Pierre A C. Synthesis and behaviour of hybrid polymersilica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO2. Journal of Sol-Gel Science and Technology, 2011, 60(2): 177–188

    CAS  Google Scholar 

  429. Lotric A, Sekavcnik M, Kunze C, Spliethoff H. Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO2 capture. Chinese Journal of Mechanical Engineering, 2011, 57(12): 911–926

    Google Scholar 

  430. Martin F Z, Dijkstra J W, Boon J, Meuldijk J. A membrane reformer with permeate side combustion for CO2 capture: modeling and design. Energy Procedia, 2011, 4: 707–714

    CAS  Google Scholar 

  431. Ostwal M, Singh R P, Dec S F, Lusk M T, Way J D. 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation. Journal of Membrane Science, 2011, 369(1–2): 139–147

    CAS  Google Scholar 

  432. Venna S R, Carreon M A. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir, 2011, 27(6): 2888–2894

    CAS  PubMed  Google Scholar 

  433. Wade J L, Lee C, West A C, Lackner K S. Composite electrolyte membranes for high temperature CO2 separation. Journal of Membrane Science, 2011, 369(1–2): 20–29

    CAS  Google Scholar 

  434. Chabanon E, Roizard D, Favre E. Modelling strategies of membrane contactor processes for CO2 post-combustion capture: a critical reassessment. Procedia Engineering, 2012, 44: 343–346

    Google Scholar 

  435. Lau C H, Paul D R, Chung T S. Molecular design of nanohybrid gas separation membranes for optimal CO2 separation. Polymer, 2012, 53(2): 454–465

    CAS  Google Scholar 

  436. Li H, Pieterse J, Dijkstra J, Boon J, Van Den Brink R, Jansen D. Bench-scale WGS membrane reactor for CO2 capture with co-production of H2. International Journal of Hydrogen Energy, 2012, 37(5): 4139–4143

    CAS  Google Scholar 

  437. Madhusoodana C, Patil M, Aminabhavi T. Ceramic supported composite membranes of hydroxy-ethyl-cellulose loaded with AL-MCM-41 for CO2 separation. Procedia Engineering, 2012, 44: 108–109

    CAS  Google Scholar 

  438. Modarresi S, Soltanieh M, Mousavi S A, Shabani I. Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation. Journal of Applied Polymer Science, 2012, 124(S1): E199–E204

    CAS  Google Scholar 

  439. Rongwong W, Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. Journal of Membrane Science, 2012, 392: 38–47

    Google Scholar 

  440. Smart S, Vente J, Da Costa J D. High temperature H2/CO2 separation using cobalt oxide silica membranes. International Journal of Hydrogen Energy, 2012, 37(17): 12700–12707

    CAS  Google Scholar 

  441. Bae T H, Long J R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569

    CAS  Google Scholar 

  442. Choi J H, Park M J, Kim J, Ko Y, Lee S H, Baek I. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194

    CAS  Google Scholar 

  443. Koutsonikolas D E, Kaldis S P, Pantoleontos G T, Zaspalis V T, Sakellaropoulos G P. Techno-economic assessment of polymeric, ceramic and metallic membranes integration in an advanced IGCC process for H2 production and CO2 capture. Trans, 2013, 35: 715–720

    Google Scholar 

  444. Lee C B, Lee S W, Park J S, Lee D W, Hwang K R, Ryi S K, Kim S H. Long-term CO2 capture tests of Pd-based composite membranes with module configuration. International Journal of Hydrogen Energy, 2013, 38(19): 7896–7903

    CAS  Google Scholar 

  445. Lin Y F, Chen C H, Tung K L, Wei T Y, Lu S Y, Chang K S. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements. ChemSusChem, 2013, 6(3): 437–442

    CAS  PubMed  Google Scholar 

  446. Ryi S K, Lee C B, Lee S W, Park J S. Pd-based composite membrane and its high-pressure module for pre-combustion CO2 capture. Energy, 2013, 51: 237–242

    CAS  Google Scholar 

  447. Zhang K, Zou Y, Su C, Shao Z, Liu L, Wang S, Liu S. CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427: 168–175

    CAS  Google Scholar 

  448. Zhu X, Chai S, Tian C, Fulvio P F, Han K S, Hagaman E W, Veith G M, Mahurin S M, Brown S, Liu H, Dai S. Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. Macromolecular Rapid Communications, 2013, 34(5): 452–459

    CAS  PubMed  Google Scholar 

  449. Zhao Y, Jung B T, Ansaloni L, Ho W W. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation. Journal of Membrane Science, 2014, 459: 233–243

    CAS  Google Scholar 

  450. Deng L, Hägg M B. Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. International Journal of Greenhouse Gas Control, 2014, 26: 127–134

    CAS  Google Scholar 

  451. Lin Y F, Ko C C, Chen C H, Tung K L, Chang K S, Chung T W. Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors. Applied Energy, 2014, 129: 25–31

    CAS  Google Scholar 

  452. Patel R, Kim S J, Roh D K, Kim J H. Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes. Chemical Engineering Journal, 2014, 254: 46–53

    CAS  Google Scholar 

  453. Pedram M Z, Omidkhah M, Amooghin A E. Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 74–82

    Google Scholar 

  454. Rabiee H, Soltanieh M, Mousavi S A, Ghadimi A. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. Journal of Membrane Science, 2014, 469: 43–58

    CAS  Google Scholar 

  455. Ryi S K, Lee S W, Park J W, Oh D K, Park J S, Kim S S. Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catalysis Today, 2014, 236: 49–56

    CAS  Google Scholar 

  456. Scholes C A, Ho M T, Aguiar A A, Wiley D E, Stevens G W, Kentish S E. Membrane gas separation processes for CO2 capture from cement kiln flue gas. International Journal of Greenhouse Gas Control, 2014, 24: 78–86

    CAS  Google Scholar 

  457. Shi H. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New Journal of Chemistry, 2014, 38(11): 5276–5278

    CAS  Google Scholar 

  458. Taniguchi I, Fujikawa S. CO2 separation with nano-thick polymeric membrane for pre-combustion. Energy Procedia, 2014, 63: 235–242

    CAS  Google Scholar 

  459. Tseng H H, Chang S H, Wey M Y. A carbon gutter layer-modified α-Al2O3 substrate for PPO membrane fabrication and CO2 separation. Journal of Membrane Science, 2014, 454: 51–61

    CAS  Google Scholar 

  460. Wu T, Wang B, Lu Z, Zhou R, Chen X. Alumina-supported AlPO-18 membranes for CO2/CH4 separation. Journal of Membrane Science, 2014, 471: 338–346

    CAS  Google Scholar 

  461. Zhang L, Gong Y, Brinkman K S, Wei T, Wang S, Huang K. Flux of silver-carbonate membranes for post-combustion CO2 capture: the effects of membrane thickness, gas concentration and time. Journal of Membrane Science, 2014, 455: 162–167

    CAS  Google Scholar 

  462. Zhang L, Gong Y, Yaggie J, Wang S, Romito K, Huang K. Surface modified silver-carbonate mixed conducting membranes for high flux CO2 separation with enhanced stability. Journal of Membrane Science, 2014, 453: 36–41

    CAS  Google Scholar 

  463. Azizi M, Mousavi S A. CO2/H2 separation using a highly permeable polyurethane membrane: molecular dynamics simulation. Journal of Molecular Structure, 2015, 1100: 401–414

    CAS  Google Scholar 

  464. Kammakakam I, Nam S, Kim T H. Ionic group-mediated crosslinked polyimide membranes for enhanced CO2 separation. Royal Society of Chemistry Advances, 2015, 5(86): 69907–69914

    CAS  Google Scholar 

  465. Konruang S, Sirijarukul S, Wanichapichart P, Yu L, Chittrakarn T. Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. Journal of Applied Polymer Science, 2015, 132(25): 42074

    Google Scholar 

  466. Lin Y F, Chang J M, Ye Q, Tung K L. Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors. Applied Energy, 2015, 154: 21–25

    CAS  Google Scholar 

  467. Nabian N, Ghoreyshi A A, Rahimpour A, Shakeri M. Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean Journal of Chemical Engineering, 2015, 32(11): 2204–2211

    CAS  Google Scholar 

  468. Nwogu N C, Kajama M N, Osueke G, Gobina E. High performance valuation of CO2 gas separation ceramic membrane system. In: Ao S I, Gelman L, Hukins D W L, Hunter A, Korsunsky A M, eds. Proceedings of the 2015 World Congress on Engineering (WCE 2015). Hong Kong: Newswood Academic Publishing, 2015, 824–827

  469. Qiao Z, Wang Z, Yuan S, Wang J, Wang S. Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation. Journal of Membrane Science, 2015, 475: 290–302

    CAS  Google Scholar 

  470. Shin D Y, Hwang K R, Park J S, Park M J. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO2 capture from H2/CO2 binary gas mixture. Korean Journal of Chemical Engineering, 2015, 32(7): 1414–1421

    CAS  Google Scholar 

  471. Sun C, Wen B, Bai B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2,CH4/H2S and CH4/N2 separation. Chemical Engineering Science, 2015, 138: 616–621

    CAS  Google Scholar 

  472. Tong J, Zhang L, Fang J, Han M, Huang K. Electrochemical capture of CO2 from natural gas using a high-temperature ceramic-carbonate membrane. Journal of the Electrochemical Society, 2015, 162(4): E43–E46

    CAS  Google Scholar 

  473. Wang B, Sun C, Li Y, Zhao L, Ho W W, Dutta P K. Rapid synthesis of faujasite/polyethersulfone composite membrane and application for CO2/N2 separation. Microporous and Mesoporous Materials, 2015, 208: 72–82

    CAS  Google Scholar 

  474. Wang N, Mundstock A, Liu Y, Huang A, Caro J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chemical Engineering Science, 2015, 124: 27–36

    CAS  Google Scholar 

  475. Wang S, Tian Z, Feng J, Wu H, Li Y, Liu Y, Li X, Xin Q, Jiang Z. Enhanced CO2 separation properties by incorporating poly (ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473: 310–317

    CAS  Google Scholar 

  476. Xin Q, Gao Y, Wu X, Li C, Liu T, Shi Y, Li Y, Jiang Z, Wu H, Cao X. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. Journal of Membrane Science, 2015, 488: 13–29

    CAS  Google Scholar 

  477. Xing W, Peters T, Fontaine M L, Evans A, Henriksen P P, Norby T, Bredesen R. Steam-promoted CO2 flux in dual-phase CO2 separation membranes. Journal of Membrane Science, 2015, 482: 115–119

    CAS  Google Scholar 

  478. Zheng Y, Hu N, Wang H, Bu N, Zhang F, Zhou R. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 2015, 475: 303–310

    CAS  Google Scholar 

  479. Zhou R, Wang H, Wang B, Chen X, Li S, Yu M. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516–7523

    CAS  Google Scholar 

  480. Dai Z, Bai L, Hval K N, Zhang X, Zhang S, Deng L. Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China. Chemistry, 2016, 59(5): 538–546

    CAS  Google Scholar 

  481. Dong G, Zhang Y, Hou J, Shen J, Chen V. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(18): 5403–5414

    CAS  Google Scholar 

  482. Dong L, Zhang C, Bai Y, Shi D, Li X, Zhang H, Chen M. High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3486–3496

    CAS  Google Scholar 

  483. Jeon H, Kim D J, Park M S, Ryu D Y, Kim J H. Amphiphilic graft copolymer nanospheres: from colloidal self-assembly to CO2 capture membranes. ACS Applied Materials & Interfaces, 2016, 8(14): 9454–9461

    CAS  Google Scholar 

  484. Karimi S, Korelskiy D, Mortazavi Y, Khodadadi A A, Sardari K, Esmaeili M, Antzutkin O N, Shah F U, Hedlund J. High flux acetate functionalized silica membranes based on in-situ co-condensation for CO2/N2 separation. Journal of Membrane Science, 2016, 520: 574–582

    CAS  Google Scholar 

  485. Li W, Zhang Y, Su P, Xu Z, Zhang G, Shen C, Meng Q. Metal-organic framework channelled graphene composite membranes for H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18747–18752

    CAS  Google Scholar 

  486. Lin Y F, Kuo J W. Mesoporous bis(trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chemical Engineering Journal, 2016, 300: 29–35

    CAS  Google Scholar 

  487. Moradi M R, Chenar M P, Noie S H. Using PDMS coated TFC-RO membranes for CO2/N2 gas separation: experimental study, modeling and optimization. Polymer Testing, 2016, 56: 287–298

    CAS  Google Scholar 

  488. Mubashir M, Yeong Y F, Lau K K. Ultrasonic-assisted secondary growth of deca-dodecasil 3 rhombohedral (DD3R) membrane and its process optimization studies in CO2/CH4 separation using response surface methodology. Journal of Natural Gas Science and Engineering, 2016, 30: 50–63

    CAS  Google Scholar 

  489. Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64

    CAS  Google Scholar 

  490. Qin Y, Lv J, Fu X, Guo R, Li X, Zhang J, Wei Z. High-performance SPEEK/amino acid salt membranes for CO2 separation. Royal Society of Chemistry Advances, 2016, 6(3): 2252–2258

    CAS  Google Scholar 

  491. Saedi S, Seidi F, Moradi F, Xiang X. Preparation and characterization of an amino-cellulose (AC) derivative for development of thin-film composite membrane for CO2/CH4 separation. Stärke, 2016, 68(7–8): 651–661

    CAS  Google Scholar 

  492. Saeed M, Deng L. Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2016, 53: 254–262

    CAS  Google Scholar 

  493. Wang Y, Yang Q, Li J, Yang J, Zhong C. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Physical Chemistry Chemical Physics, 2016, 18(12): 8352–8358

    CAS  PubMed  Google Scholar 

  494. Wong K, Goh P, Ismail A F. Thin film nanocomposite: the next generation selective membrane for CO2 removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15726–15748

    CAS  Google Scholar 

  495. Zhang P, Tong J, Jee Y, Huang K. Stabilizing a high-temperature electrochemical silver-carbonate CO2 capture membrane by atomic layer deposition of a ZrO2 overcoat. Chemical Communications, 2016, 52(63): 9817–9820

    CAS  PubMed  Google Scholar 

  496. Zhong S, Bu N, Zhou R, Jin W, Yu M, Li S. Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. Journal of Membrane Science, 2016, 520: 507–514

    CAS  Google Scholar 

  497. Benito J, Sánchez Laínez J, Zornoza B, Martín S, Carta M, Malpass Evans R, Téllez C, McKeown N B, Coronas J, Gascón I. Ultrathin composite polymeric membranes for CO2/N2 separation with minimum thickness and high CO2 permeance. Chem-SusChem, 2017, 10(20): 4014–4017

    CAS  Google Scholar 

  498. Kgaphola K, Sigalas I, Daramola M O. Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO2 capture. Asia-PacificJournal of Chemical Engineering, 2017, 12(6): 894–904

    CAS  Google Scholar 

  499. Khakpay A, Rahmani F, Nouranian S, Scovazzo P. Molecular insights on the CH4/CO2 separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. Journal of Physical Chemistry C, 2017, 121(22): 12308–12320

    CAS  Google Scholar 

  500. Kim N U, Park B J, Choi Y, Lee K B, Kim J H. High-performance self-cross-linked PGP-POEM comb copolymer membranes for CO2 capture. Macromolecules, 2017, 50(22): 8938–8947

    CAS  Google Scholar 

  501. Kline G K, Weidman J R, Zhang Q, Guo R. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations. Journal of Membrane Science, 2017, 544: 25–34

    CAS  Google Scholar 

  502. Mahdavi H R, Azizi N, Mohammadi T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/g-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67

    Google Scholar 

  503. Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. Journal of Membrane Science, 2017, 522: 351–362

    CAS  Google Scholar 

  504. Qu Y, Li F, Zhao M. Theoretical design of highly efficient CO2/N2 separation membranes based on electric quadrupole distinction. Journal of Physical Chemistry C, 2017, 121(33): 17925–17931

    CAS  Google Scholar 

  505. Selyanchyn R, Fujikawa S. Membrane thinning for efficient CO2 capture. Science and Technology of Advanced Materials, 2017, 18(1): 816–827

    CAS  PubMed  PubMed Central  Google Scholar 

  506. Shafie SNA, Man Z, Idris A. Development of polycarbonate-silica matrix membrane for CO2/CH4 separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020129

    Google Scholar 

  507. Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Kitamura Y. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy, 2017, 124: 29–39

    CAS  Google Scholar 

  508. Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Science and Technology of Advanced Materials, 2017, 18(1): 950–958

    CAS  PubMed  PubMed Central  Google Scholar 

  509. Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289

    CAS  Google Scholar 

  510. Wang S, Xie Y, He G, Xin Q, Zhang J, Yang L, Li Y, Wu H, Zhang Y, Guiver M D, Jiang Z. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angewandte Chemie International Edition, 2017, 56(45): 14246–14251

    CAS  PubMed  Google Scholar 

  511. Zhang C, Zhang W, Gao H, Bai Y, Sun Y, Chen Y. Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation. Journal of Membrane Science, 2017, 528: 72–81

    CAS  Google Scholar 

  512. Zhang Y, Wang H, Zhang Y, Ding X, Liu J. Thin film composite membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO2/N2 separation. Separation and Purification Technology, 2017, 189: 128–137

    CAS  Google Scholar 

  513. Zhao L, Sang P, Guo S, Liu X, Li J, Zhu H, Guo W. Promising monolayer membranes for CO2/N2/CH4 separation: graphdiynes modified respectively with hydrogen, fluorine and oxygen atoms. Applied Surface Science, 2017, 405: 455–464

    CAS  Google Scholar 

  514. Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19914–19923

    CAS  Google Scholar 

  515. Constantinou A, Barrass S, Gavriilidis A. CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis, 2018, 7(6): 471–476

    CAS  Google Scholar 

  516. Russo G, Prpich G, Anthony E J, Montagnaro F, Jurado N, Di Lorenzo G, Darabkhani H G. Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 2018, 549: 649–659

    CAS  Google Scholar 

  517. Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K. Enhanced CO2 separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH3Cl. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(5): 1528–1539

    CAS  Google Scholar 

  518. Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549: 670–679

    CAS  Google Scholar 

  519. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO2/H2 separation. Journal of Applied Polymer Science, 2018, 135(5): 45765

    Google Scholar 

  520. Ovalle Encinia O, Pfeiffer H, Ortiz Landeros J. Ce0.85Sm0.15O2-Sm0.6Sr0.4Al0.3Fe0.7O3 composite for the preparation of dense ceramic-carbonate membranes for CO2 separation. Journal of Membrane Science, 2018, 547: 11–18

    CAS  Google Scholar 

  521. Constantinou A, Barrass S, Pronk F, Bril T, Wenn D, Shaw J, Gavriilidis A. CO2 absorption in a high efficiency silicon nitride mesh contactor. Chemical Engineering Journal, 2012, 207: 766–771

    Google Scholar 

  522. Constantinou A, Gavriilidis A. CO2 absorption in a microstructured mesh reactor. Industrial & Engineering Chemistry Research, 2010, 49(3): 1041–1049

    CAS  Google Scholar 

  523. Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous and Mesoporous Materials, 2008, 110(2–3): 310–317

    CAS  Google Scholar 

  524. Duan S, Taniguchi I, Kai T, Kazama S. Development of poly (amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO2 capture at elevated pressures. Energy Procedia, 2013, 37: 924–931

    CAS  Google Scholar 

  525. Ahmad F, Lau K K, Shariff A M. Modeling and parametric study for CO2/CH4 separation using membrane processes. World Academy of Science, Engineering and Technology, 2010, 2010(4): 387–392

    Google Scholar 

  526. Arias A M, Mussati M C, Mores P L, Scenna N J, Caballero J A, Mussati S F. Optimization of multi-stage membrane systems for CO2 capture from flue gas. International Journal of Greenhouse Gas Control, 2016, 53: 371–390

    CAS  Google Scholar 

  527. Couling D J, Prakash K, Green W H. Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined-cycle power with CO2 capture and sequestration. Industrial & Engineering Chemistry Research, 2011, 50(19): 11313–11336

    CAS  Google Scholar 

  528. Hasan M F, Baliban R C, Elia J A, Floudas C A. Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Industrial & Engineering Chemistry Research, 2012, 51(48): 15642–15664

    CAS  Google Scholar 

  529. Johannessen E, Jordal K. Study of a H2 separating membrane reactor for methane steam reforming at conditions relevant for power processes with CO2 capture. Energy Conversion and Management, 2005, 46(7–8): 1059–1071

    CAS  Google Scholar 

  530. Jusoh N, Lau K K, Shariff A M, Yeong Y. Capture of bulk CO2 from methane with the presence of heavy hydrocarbon using membrane process. International Journal of Greenhouse Gas Control, 2014, 22: 213–222

    CAS  Google Scholar 

  531. Jusoh N, Lau K K, Yeong Y F, Shariff A M. Bulk CO2/CH4 separation for offshore operating conditions using membrane process. Sains Malaysiana, 2016, 45(11): 1707–1714

    CAS  Google Scholar 

  532. Lee S H, Kim J N, Eom W H, Ryi S K, Park J S, Baek I H. Development of pilot WGS/multi-layer membrane for CO2 capture. Chemical Engineering Journal, 2012, 207: 521–525

    Google Scholar 

  533. Merkel T C, Wei X, He Z, White L S, Wijmans J, Baker R W. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Industrial & Engineering Chemistry Research, 2012, 52(3): 1150–1159

    Google Scholar 

  534. Nagumo R, Iwata S, Mori H. Simulated process evaluation of synthetic natural gas production based on biomass gasification and potential of CO2 capture using membrane separation Technology. Journal of the Japan Petroleum Institute, 2013, 56(6): 395–400

    CAS  Google Scholar 

  535. Piroonlerkgul P, Laosiripojana N, Adesina A, Assabumrungrat S. Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO2 removal. Chemical Engineering and Processing: Process Intensification, 2009, 48(2): 672–682

    CAS  Google Scholar 

  536. Rezvani S, Huang Y, McIlveen Wright D, Hewitt N, Mondol J D. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. Fuel, 2009, 88(12): 2463–2472

    CAS  Google Scholar 

  537. Scholes C A, Simioni M, Qader A, Stevens G W, Kentish S E. Membrane gas-solvent contactor trials of CO2 absorption from syngas. Chemical Engineering Journal, 2012, 195: 188–197

    Google Scholar 

  538. Shao P, Dal Cin M M, Guiver M D, Kumar A. Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427: 451–459

    CAS  Google Scholar 

  539. Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie, 2015, 127(2): 588–592

    Google Scholar 

  540. Skorek Osikowska A, Bartela L, Kotowicz J. Thermodynamic and economic evaluation of a CO2 membrane separation unit integrated into a supercritical coal-fired heat and power plant. Journal of Power Technologies, 2015, 95(3): 201–210

    CAS  Google Scholar 

  541. Stanislowski J, Holmes M, Snyder A, Tolbert S, Curran T. Advanced CO2 separation technologies: coal gasification, warmgas cleanup, and hydrogen separation membranes. Energy Procedia, 2013, 37: 2316–2326

    CAS  Google Scholar 

  542. Tuinier M, Hamers H, van Sint Annaland M. Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559–1565

    CAS  Google Scholar 

  543. Turi D, Ho M, Ferrari M, Chiesa P, Wiley D, Romano M C. CO2 capture from natural gas combined cycles by CO2 selective membranes. International Journal of Greenhouse Gas Control, 2017, 61: 168–183

    CAS  Google Scholar 

  544. Wang B, Zhu D C, Zhan M C, Liu W, Chen C S. Combustion of coal-derived CO with membrane-supplied oxygen enabling CO2 capture. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(9): 2481–2484

    CAS  Google Scholar 

  545. Yang D, Wang Z, Wang J, Wang S. Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas. Energy & Fuels, 2009, 23(10): 4755–4762

    CAS  Google Scholar 

  546. Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1–2): 173–183

    CAS  Google Scholar 

  547. Wang Z, Dong S, Li N, Cao X, Sheng M, Xu R, Wang B, Wu H, Ma C, Yuan Y. CO2-selective membranes: how easy is their moving from laboratory to industrial scale? In: Current Trends and Future Developments on (bio-) membranes. Amsterdam: Elsevier, 2018, 75–102

    Google Scholar 

  548. Doran P. Chapter 11-Unit Operations, In: Bioprocess Engineering Principles. 2nd ed. London: Elsevier, 2013, 445–595

    Google Scholar 

  549. Cui Z, Muralidhara H. Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Burlington: Elsevier, 2010, 1–270

    Google Scholar 

  550. Yilbas B S. The Laser Cutting Process: Analysis and Applications. Amsterdam: Elsevier, 2017, 5–311

    Google Scholar 

  551. Rezzadori K, PenhaF M, PronerM C, Zin G, Petrus J C, Di Luccio M. Impact of organic solvents on physicochemical properties of nanofiltration and reverse-osmosis membranes. Chemical Engineering & Technology, 2019, 42(12): 2700–2708

    CAS  Google Scholar 

  552. Zhang Y T, Dai X G, Xu G H, Zhang L, Zhang H Q, Liu J D, Chen H L. Modeling of CO2 mass transport across a hollow fiber membrane reactor filled with immobilized enzyme. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(7): 2069–2077

    CAS  Google Scholar 

  553. Zhang Y T, Zhang L, Chen H L, Zhang H M. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 2010, 65(10): 3199–3207

    CAS  Google Scholar 

  554. Singh R. Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation. Oxford: Butterworth-Heinemann, 2014, 1–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achilleas Constantinou.

Electronic Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hafeez, S., Safdar, T., Pallari, E. et al. CO2 capture using membrane contactors: a systematic literature review. Front. Chem. Sci. Eng. 15, 720–754 (2021). https://doi.org/10.1007/s11705-020-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1992-z

Keywords

  • CO2 capture
  • preferred reporting items for systematic reviews and meta-analyses
  • membrane contactor
  • absorbent