Skip to main content
Log in

Fe2Mo3O8 nanoparticles self-assembling 3D mesoporous hollow spheres toward superior lithium storage properties

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Unique self-assembled iron(II) molybdenum (IV) oxide (Fe2Mo3O8) mesoporous hollow spheres have been facilely constructed via the bubble-template-assisted hydrothermal synthesis method combined with simple calcination. The compact assembly of small nanoparticles on the surface of the hollow spheres not only provides more active sites for the Fe2Mo3O8, but also benefits the stability of the hollow structure, and thus improved the lithium storage properties of Fe2Mo3O8. The Fe2Mo3O8 mesoporous hollow spheres exhibit high initial discharge and charge capacities of 1189 and 997 mA·h·g−1 respectively, as well as good long-term cycling stability (866 mA · h · g−1 over 70 cycles) when used as a lithium-ion battery anode. This feasible material synthesis strategy will inspire the variation of structural design in other ternary metal molybdates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, Tokura Y. Electromagnon resonance in a collinear spin state of a polar antiferromagnet Fe2Mo3O8. Physical Review. B, 2017, 95(2): 20405–20421

    Article  Google Scholar 

  2. Ou H H, Tran Q T P, Lin P H. A synergistic effect between gluconate and molybdate on corrosion inhibition of recirculating cooling water systems. Corrosion Science, 2018, 133: 231–239

    Article  CAS  Google Scholar 

  3. Li Y, Xu H, Huang H, Wang C, Gao L G, Ma T L. One-dimensional MoO2-Co2Mo3O8@C nanorods: a novel and high efficient oxygen evolution reaction catalyst derived from metal organic framework composite. Chemical Communications, 2018, 54(22): 2739–2742

    Article  CAS  Google Scholar 

  4. Zhang L, Zheng S S, Wang L L, Tang H, Xue H G, Wang G X, Pang H. Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small, 2017, 13(33): 1700917–1700936

    Article  Google Scholar 

  5. Gao S S, Tang Y K, Gao Y, Liu Y, Zhao H Y, Li X H, Wang X Z. Highly crystalized Co2Mo3O8 hexagonal nanoplates interconnected by coal-derived carbon via the molten-salt-assisted method for competitive Li-ion battery anodes. ACS Applied Materials & Interfaces, 2019, 11(7): 7006–7013

    Article  CAS  Google Scholar 

  6. Petnikot S, Marka S K, Srikanth V V S S, Reddy M V, Chowdari B V R. Elucidation of few layered graphene-complex metal oxide (A2Mo3O8, A = Co, Mn and Zn) composites as robust anode materials in Li ion batteries. Electrochimica Acta, 2015, 178: 699–708

    Article  Google Scholar 

  7. Zhang L, He W, Liu Y, Ling M, Zheng P, Guo S. 3D hierarchical flower of copper molybdate Cu3Mo2O9: synthesis, nanostructure and lithium storage properties. Journal of Alloys and Compounds, 2017, 723: 512–519

    Article  CAS  Google Scholar 

  8. Sun Y M, Hu X L, Luo W, Shu J, Huang Y H. Self-assembly of hybrid Fe2Mo3O8-reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(14): 4468–1474

    Article  CAS  Google Scholar 

  9. Chu Y Y, Shi X Y, Wang Y, Fang Z Q, Deng Y J, Liu Z X, Dong Q S, Hao Z M. High temperature solid-state synthesis of dopant-free Fe2Mo3O8 for lithium ion batteries. Inorganic Chemistry Communications, 2019, 107: 107477–107481

    Article  CAS  Google Scholar 

  10. Maseed H, Petnikota P, Srikanth V V S S, Srinivasan M, Chowdari B V R, Reddy M V, Adams S. Fe2Mo3O8/exfoliated graphene oxide: solid-state synthesis, characterization and anodic application in Li-ion batteries. New Journal of Chemistry, 2018, 42(15): 12817–12823

    Article  CAS  Google Scholar 

  11. Zhang L, Shen K, He W, Liu Y, Yin L, Guo S. Hierarchical nanorods constructed by Mn2Mo3O8@reduced graphene oxide nanosheet arrays with enhanced lithium storage properties. Journal of Physics and Chemistry of Solids, 2018, 121: 71–77

    Article  CAS  Google Scholar 

  12. Liang J, Yu X, Zhou H, Wu H B, Ding S J, Lou X W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angewandte Chemie International Edition, 2014, 53(47): 12803–12807

    Article  CAS  Google Scholar 

  13. He Y, Zhang Y, Ding F, Li X, Wang Z, Lü Z, Wang X, Liu Z, Huang X. Formation of hollow nanofiber rolls through controllable carbon diffusion for Li metal host. Carbon, 2020, 157: 622–630

    Article  CAS  Google Scholar 

  14. Wang L J, Liu F H, Ning Y S, Bradley R, Yang C B, Yong K, Zhao B Y, Wu W P. Biocompatible mesoporous hollow carbon nanocapsules for high performance supercapacitors. Scientific Reports, 2020, 10(1): 4306

    Article  Google Scholar 

  15. Lu S J, Wang Z T, Zhang X H, He Z J, Tong H, Li Y J, Zheng J C. In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12(2): 2671–2678

    Article  CAS  Google Scholar 

  16. Lu J W, Lan L, Liu X T T, Wang N, Fan X L. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13(4): 665–671

    Article  CAS  Google Scholar 

  17. Liang L W, Sun X, Zhang J Y, Hou L H, Sun J F, Liu Y, Wang S G, Yuan C Z. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Advanced Energy Materials, 2019, 9(11): 1802847

    Article  Google Scholar 

  18. Liu T F, Zhang Y P, Jiang Z G, Zeng X Q, Ji J P, Li Z H, Gao X H, Sun M H, Lin Z, Ling M, Zheng J, Liang C. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy & Environmental Science, 2019, 12(5): 1512–1533

    Article  CAS  Google Scholar 

  19. Zhang L, He W, Ling M, Shen K, Liu Y, Guo S. Cu@MoO2@C nanocomposite with stable yolk-shell structure for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 768: 714–721

    Article  CAS  Google Scholar 

  20. Rossetti G A, Burger J L, Sisson R D. Characterization of mixed cobalt-molybdenum oxides prepared by evaporative decomposition of solutions. Journal of the American Ceramic Society, 1989, 72(10): 1811–1815

    Article  CAS  Google Scholar 

  21. Eschenauer H A, Kobelev V V, Schumacher A. Bubble method for topology and shape optimization ofstructures. Structural Optimization, 1994, 8(1): 42–51

    Article  Google Scholar 

  22. Nie C, Zeng W, Jing X, Ye H. NiO hollow nanospheres with different surface by a bubble-template approach and its gas sensing. Journal of Materials Science Materials in Electronics, 2018, 29(9): 7480–7488

    Article  CAS  Google Scholar 

  23. Ding C, Yan D, Zhao Y, Zhao Y Z, Zhou H P, Li J B, Jin H B. Bubble-template approach to assemble Ni-Co oxide hollow microspheres with enhanced electrochemical performance as anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2016, 18(37): 25879–25886

    Article  CAS  Google Scholar 

  24. Zuo X X, Chang K, Zhao J, Xie Z Z, Tang H W, Li B, Chang Z R. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(1): 51–58

    Article  CAS  Google Scholar 

  25. Chen R J, Zhao T, Wu W P, Wu F, Li L, Qian J, Xu R, Wu H M, Albishri H M, Al-Bogami A S, El-Hady D A, Lu J, Amine K. Freestanding hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Letters, 2014, 14(10): 5899–5904

    Article  CAS  Google Scholar 

  26. Kozakova Z, Kuritka I, Kazantseva N E, Babayan V, Pastorek M, Machovsky M, Bazant P, Saha P. The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalton Transactions (Cambridge, England), 2015, 44(48): 21099–21108

    Article  CAS  Google Scholar 

  27. Skrabalak S E, Wiley B J, Kim M, Formo E V, Xia Y N. On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Letters, 2008, 8(7): 2077–2081

    Article  CAS  Google Scholar 

  28. Zhou Y, Yao H, Zhang Q, Gong J, Liu S, Yu S. Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorganic Chemistry, 2009, 48(3): 1082–1090

    Article  CAS  Google Scholar 

  29. Zhang L, Cao X, Ma Y, Chen X, Xue Z. Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres. CrystEngComm, 2010, 12(1): 207–210

    Article  CAS  Google Scholar 

  30. Zhang L, Shen K, Li Y, Zha T, Song Y, Liu Y, Guo S. Top-down tailoring of nanostructured manganese molybdate enhances its lithium storage properties. CrystEngComm, 2019, 21(36): 5374–5381

    Article  CAS  Google Scholar 

  31. Tang L B, Zhang B, An C S, Li H, Xiao B, Li J H, He Z J, Zheng J C. Ultrahigh-rate behavior anode materials of MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene for sodium-ion batteries. Inorganic Chemistry, 2019, 58(12): 8169–8178

    Article  Google Scholar 

  32. Das B, Reddy M V, Tripathy S, Chowdari B V R. A disc-like Mo-metal cluster compound, Co2Mo3O8, as a high capacity anode for lithium ion batteries. RSC Advances, 2014, 4(64): 33883–33889

    Article  CAS  Google Scholar 

  33. Zhu Y, Zhong Y, Chen G, Deng X, Cai R, Li L, Shao Z. Hierarchical Zn2Mo3O8 nanodots-porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52(60): 9402–9405

    Article  CAS  Google Scholar 

  34. Das B, Reddy M V, Krishnamoorthi C, Tripathy S, Mahendiran R, Rao G V S, Chowdari B V R. Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochimica Acta, 2009, 54(12): 3360–3373

    Article  CAS  Google Scholar 

  35. Kim H, Choi W, Yoon J, Um J H, Lee W, Kim J, Cabana J, Yoon W S. Exploring anomalous charge storage in anode materials for next generation Li rechargeable batteries. Chemical Reviews, 2020, 120(14): 6934–6976

    Article  CAS  Google Scholar 

  36. Zheng J C, Yang Z, He Z J, Tong H, Yu W J, Zhang J F. In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy, 2018, 53: 613–621

    Article  CAS  Google Scholar 

  37. Xiao B, Zhang W, Wang P, Tang L B, An C, He Z, Tong H, Zheng J, Wang B, An C S, He Z J, Tong H, Zheng J C, Wang B. V2(PO4)O encapsulated into crumpled nitrogen-doped graphene as a high-performance anode material for sodium-ion batteries. Electrochimica Acta, 2019, 306: 238–244

    Article  CAS  Google Scholar 

  38. Zuo D H, Song S C, An C S, Tang L B, He Z J, Zheng Z C. Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy, 2019, 62: 401–409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21203116 and 51602184), the China Scholarship Council (CSC), the Innovate UK (Grant No. 104013), EPSRC UKRI (EP/T024682/1), the institutional strategic grant-Global Challenges Research Fund (GCRF) that City, University of London receives from Research England, UK Research and Innovation (UKRI), the Natural Science Foundation of Shaanxi (Grant No. 2020JM-502), the funding for platform construction of energy storage materials and devices in Shaanxi University of Science and Technology (Grant No. 0126-126021802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang, Weiping Wu or Shouwu Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Song, Y., Wu, W. et al. Fe2Mo3O8 nanoparticles self-assembling 3D mesoporous hollow spheres toward superior lithium storage properties. Front. Chem. Sci. Eng. 15, 156–163 (2021). https://doi.org/10.1007/s11705-020-1986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1986-x

Keywords

Navigation