Skip to main content
Log in

Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, TiO2 functionalized with organic groups were prepared to study the effect of carboxyl and amino groups on the adsorption behavior of TiO2 for the removal of acid red G (ARG) as an anionic dye from aqueous solution. TiO2 was successfully modified with carboxyl and amino groups by using the hydrolysis method with oxalic acid (OAD, with two carboxyl groups), ethylenediamine (EDA, with two amino groups) and DL-alanine (DLA, with one carboxyl group and one amino group) at low temperature (65 °C) and labeled as OAD-TiO2, EDA-TiO2 and DLA-TiO2, respectively. The ARG uptake by the functionalized TiO2 samples was largely dependent on the functional groups. The interaction between ARG and the functional organic groups on the TiO2 samples plays an important role in the adsorption process, which leads to the excellent adsorption performance (higher capacity and faster adsorption rate) of the functionalized TiO2 samples than that of P25 (commercial TiO2 without modification). Furthermore, there is no obvious loss of the adsorption capacity for the functionalized TiO2 even after 5 adsorption-desorption cycles, which indicated the good reusability of the modified TiO2 samples for anionic dye removal from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Park H, Kim H I, Moon G H, Choi W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 2016, 9(2): 411–433

    Article  CAS  Google Scholar 

  2. Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189

    Article  CAS  Google Scholar 

  3. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986

    Article  CAS  PubMed  Google Scholar 

  4. Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2 (32): 12642–12661

    Article  CAS  Google Scholar 

  5. Prieto Rodriguez L, Miralles Cuevas S, Oller I, Aguera A, Li Puma G, Malato S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, 211: 131–137

    Article  PubMed  CAS  Google Scholar 

  6. Marinho B A, Cristóvão R O, Djellabi R, Loureiro J M, Boaventura R A, Vilar V J P. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Applied Catalysis B: Environmental, 2017, 203: 18–30

    Article  CAS  Google Scholar 

  7. Choi Y, Koo M S, Bokare A D, Kim D H, Bahnemann D W, Choi W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2. Environmental Science & Technology, 2017, 51(7): 3973–3981

    Article  CAS  Google Scholar 

  8. Xiong L, Sun W, Yang Y, Chen C, Ni J. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption. Journal of Colloid and Interface Science, 2011, 356(1): 211–216

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen-Phan T D, Song M B, Shin E W. Removal efficiency of gaseous benzene using lanthanide-doped mesoporous titania. Journal of Hazardous Materials, 2009, 167(1–3): 75–81

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Cole J M, Dai C. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Applied Materials & Interfaces, 2014, 6(10): 7535–7546

    Article  CAS  Google Scholar 

  11. Kim B, Park S W, Kim J Y, Yoo K, Lee J A, Lee M W, Lee D K, Kim J Y, Kim B, Kim H, Han S, Son H J, Ko M J. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(11): 5201–5207

    Article  CAS  Google Scholar 

  12. Natarajan T S, Bajaj H C, Tayade R J. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. Journal of Colloid and Interface Science, 2014, 433: 104–114

    Article  CAS  PubMed  Google Scholar 

  13. Sugita T, Kobayashi K I, Kobayashi K, Yamazaki T, Fujii K, Itabashi H, Mori M. Enhanced aqueous adsorption and photo-decomposition of anionic organic target by amino group-modified TiO2 as anionic adsorptive photocatalyst. Journal of Photochemistry and Photobiology A Chemistry, 2018, 356: 71–80

    Article  CAS  Google Scholar 

  14. Baig M I, Ingole P G, Choi W K, Park S R, Kang E C, Lee H K. Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 2016, 514: 622–635

    Article  CAS  Google Scholar 

  15. Nguyen-Le M T, Lee B K. High temperature synthesis of interfacial functionalized carboxylate mesoporous TiO2 for effective adsorption of cationic dyes. Chemical Engineering Journal, 2015, 281: 20–33

    Article  CAS  Google Scholar 

  16. Liu J M, Han L, An N, Xing L, Ma H Y, Cheng L, Yang J C, Zhang Q C. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Applied Catalysis B: Environmental, 2017, 202: 642–652

    Article  CAS  Google Scholar 

  17. Wang J, Yang G, Chen J, Liu Y, Wang Y, Lao C Y, Xi K, Yang D, Harris C J, Yan W, Ding S, Kumar R V. Flexible and High-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Advanced Energy Materials, 2019, 9(38): 1902001

    Article  CAS  Google Scholar 

  18. Weng Y, Li L, Liu Y, Wang L, Yang G. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. Journal of Physical Chemistry B, 2003, 107(18): 4356–4363

    Article  CAS  Google Scholar 

  19. Karapati S, Giannakopoulou T, Todorova N, Boukos N, Dimotikali D, Trapalis C. Eco-efficient TiO2 modification for air pollutants oxidation. Applied Catalysis B: Environmental, 2015, 176–177: 578–585

    Article  CAS  Google Scholar 

  20. Mallakpour S, Nikkhoo E. Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles. Advanced Powder Technology, 2014, 25(1): 348–353

    Article  CAS  Google Scholar 

  21. Shi B, Zhao C, Ji Y, Shi J, Yang H. Promotion effect of PANI on Fe-PANI/zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition. Applied Surface Science, 2020, 508: 145298

    Article  CAS  Google Scholar 

  22. Li X, Wang D, Cheng G, Luo Q, An J, Wang Y. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental, 2008, 81(3–4): 267–273

    Article  CAS  Google Scholar 

  23. Janković I A, Šaponjić Z V, Čomor M I, Nedeljković J M. Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. Journal of Physical Chemistry C, 2009, 113(29): 12645–12652

    Article  CAS  Google Scholar 

  24. Duckworth O W, Martin S T. Surface complexation and dissolution of hematite by C1–C6 dicarboxylic acids at pH = 5.0. Geochimica et Cosmochimica Acta, 2001, 65(23): 4289–4301

    Article  CAS  Google Scholar 

  25. Filius J D, Hiemstra T, Van Riemsdijk W H. Adsorption of small weak organic acids on goethite: modeling of mechanisms. Journal of Colloid and Interface Science, 1997, 195(2): 368–380

    Article  CAS  PubMed  Google Scholar 

  26. Crake A, Christoforidis K C, Godin R, Moss B, Kafizas A, Zafeiratos S, Durrant J R, Petit C. Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation. Applied Catalysis B: Environmental, 2019, 242: 369–378

    Article  CAS  Google Scholar 

  27. Feng J, Zhu J, Lv W, Li J, Yan W. Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chemical Engineering Journal, 2015, 269: 316–322

    Article  CAS  Google Scholar 

  28. Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002, 14(9): 3808–3816

    Article  CAS  Google Scholar 

  29. Yu J C, Yu J G, Ho W K, Zhang L Z. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chemical Communications, 2001, 19(19): 1942–1943

    Article  CAS  Google Scholar 

  30. Lyu W, Wu J M, Zhang W L, Liu Y P, Yu M T, Zhao Y F, Feng J T, Yan W. Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(VI) and immobilization of Cr(III). Chemical Engineering Journal, 2019, 363: 107–119

    Article  CAS  Google Scholar 

  31. Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 2004, 42(1): 83–94

    Article  CAS  Google Scholar 

  32. Shayegan Z, Haghighat F, Lee C S, Bahloul A, Huard M. Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds. Chemical Engineering Journal, 2018, 346: 578–589

    Article  CAS  Google Scholar 

  33. Li S, Fang L, Ye M, Zhang Y. Enhanced adsorption of norfloxacin on modified TiO2 particles prepared via surface molecular imprinting technique. Desalination and Water Treatment, 2016, 57: 408–418

    Google Scholar 

  34. Leong S, Li D, Hapgood K, Zhang X W, Wang H T. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Applied Catalysis B: Environmental, 2016, 198: 224–233

    Article  CAS  Google Scholar 

  35. Wang L, Wang J, Wang Z, He C, Lyu W, Yan W, Yang L. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chemical Engineering Journal, 2018, 354: 623–632

    Article  CAS  Google Scholar 

  36. Srinivasan A, Viraraghavan T. Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 2010, 91(10): 1915–1929

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W L, Fu R, Wang L, Zhu J W, Feng J T, Yan W. Rapid removal of ammonia nitrogen in low-concentration from wastewater by amorphous sodium titanate nano-particles. Science of the Total Environment, 2019, 668: 815–824

    Article  CAS  PubMed  Google Scholar 

  38. Suresh Kumar P, Korving L, Keesman K J, van Loosdrecht M, Witkamp G. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 2019, 358: 160–169

    Article  CAS  Google Scholar 

  39. Han X X, Zhu G Q, Ding Y X, Miao Y L, Wang K W, Zhang H J, Wang Y, Liu S B. Selective catalytic synthesis of glycerol monolaurate over silica gel-based sulfonic acid functionalized ionic liquid catalysts. Chemical Engineering Journal, 2019, 359: 733–745

    Article  CAS  Google Scholar 

  40. Han X, Yan W, Hung C T, He Y, Wu P H, Liu L L, Huang S J, Liu S B. Transesterification of soybean oil to biodiesel by tin-based Brønsted-Lewis acidic ionic liquid catalysts. Korean Journal of Chemical Engineering, 2016, 33(7): 2063–2072

    Article  CAS  Google Scholar 

  41. Zhang X, Bai R. Adsorption behavior of humic acid onto polypyrrole-coated nylon 6,6-granules. Journal of Materials Chemistry, 2002, 12(9): 2733–2739

    Article  CAS  Google Scholar 

  42. Li J, Zhang Q, Feng J, Yan W. Synthesis of PPy-modified TiO2 composite in H2SO4 solution and its novel adsorption characteristics for organic dyes. Chemical Engineering Journal, 2013, 225: 766–775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Shaanxi Key research and development projects, China (Grant No. 2017SF-386), the Fundamental Research Funds for the Central Universities of China and the Key Industrial Project in Xianyang City, Shaanxi, China (Grant No. 2018k02-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Feng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhao, X., Zhang, L. et al. Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G. Front. Chem. Sci. Eng. 15, 1147–1157 (2021). https://doi.org/10.1007/s11705-020-1978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1978-x

Keywords

Navigation