Skip to main content
Log in

A density functional theory study on the mechanism of Dimethyl ether carbonylation over heteropolyacids catalyst

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Dimethyl ether (DME) carbonylation is considered as a key step for a promising route to produce ethanol from syngas. Heteropolyacids (HPAs) are proved to be efficient catalysts for DME carbonylation. In this work, the reaction mechanism of DME carbonylation was studied theoretically by using density functional theory calculations on two typical HPA models (HPW, HSiW). The whole process consists of three stages: DME dissociative adsorption, insertion of CO into methoxyl group and formation of product methyl acetate. The activation barriers of all possible elementary steps, especially two possible paths for CO insertion were calculated to obtain the most favorable reaction mechanism and rate-limiting step. Furthermore, the effect of the acid strength of Brønsted acid sites on reactivity was studied by comparing the activation barriers over HPW and HSiW with different acid strength, which was determined by calculating the deprotonation energy, Mulliken population analyses and adsorption energies of pyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander E F, Richard J P, Brian T T, Andrew D J, Michael O H, Daniel M K. Ethanol can contribute to energy and environmental goals. Science, 2006, 311 (5760): 506–508

    Article  Google Scholar 

  2. Li L Y, Wang Q Y, Liu H C, Sun T T, Fan D, Yang M, Tian P, Liu Z M. Preparation of spherical mordenite zeolite assemblies with excellent catalytic performance for dimethyl ether carbonylation. ACS Applied Materials & Interfaces, 2018, 10(38): 32239–32246

    Article  CAS  Google Scholar 

  3. Wei Q H, Yang G H, Gao X H, Tan L, Ai P P, Zhang P P, Lu P, Yoneyama Y, Tsubaki N. A facile ethanol fuel synthesis from dimethyl ether and syngas over tandem combination of Cu-doped H-ZSM-35 with Cu-Zn-Al catalyst. Chemical Engineering Journal, 2017, 316: 832–841

    Article  CAS  Google Scholar 

  4. Volkova G G, Plyasova L M, Salanov A N, Kustova G N, Yurieva T M, Likholobov V A. Heterogeneous catalysts for halide-free carbonylation of dimethyl ether. Catalysis Letters, 2002, 80(3–4): 175–179

    Article  CAS  Google Scholar 

  5. Volkova G G, Plyasova L M, Shkuratova L N, Budneva A A, Paukshtis E A, Timofeeva M N, Likholobov V A. Solid superacids for halide-free carbonylation of dimethyl ether to methyl acetate. Studies in Surface Science and Catalysis, 2004, 147(04): 403–408

    Article  CAS  Google Scholar 

  6. Luzgin M V, Kazantsev M S, Wang W, Stepanov A G. Reactivity of methoxy species toward CO on keggin 12-H3PW12O40: a study with solid state NMR. Journal of Physical Chemistry C, 2009, 113(45): 19639–19644

    Article  CAS  Google Scholar 

  7. Luzgin M V, Kazantsev M S, Volkova G G, Wang W, Stepanov A G. Carbonylation of dimethyl ether on solid Rh-promoted Cs-salt of keggin 12-H3PW12O40: a solid-state NMR study of the reaction mechanism. Journal of Catalysis, 2011, 277(1): 72–79

    Article  CAS  Google Scholar 

  8. Luzgin M V, Kazantsev M S, Volkova G G, Stepanov A G. Solidstate NMR study of the kinetics and mechanism of dimethyl ether carbonylation on cesium salt of 12-tungstophosphoric acid modified with Ag, Pt and Rh. Journal of Catalysis, 2013, 308: 250–257

    Article  CAS  Google Scholar 

  9. Boronat M, Martinez-Sanchez C, Law D, Corma A. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. Journal of the American Chemical Society, 2008, 130(48): 16316–16323

    Article  CAS  Google Scholar 

  10. Li B J, Xu J, Han B, Wang X M, Qi G D, Zhang Z F, Wang C, Deng F. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2013, 117(11): 5840–5847

    Article  CAS  Google Scholar 

  11. Alsalme A M, Wiper P V, Khimyak Y Z, Kozhevnikova E F, Kozhevnikov I V. Solid acid catalysts based on 12H3PW12O40 heteropoly acid: acid and catalytic properties at a gassolid interface. Journal of Catalysis, 2010, 276(1): 181–189

    Article  CAS  Google Scholar 

  12. Li Y, Huang S Y, Cheng Z Z, Wang S P, Ge Q F, Ma X B. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/HMOR. Journal of Catalysis, 2018, 365: 440–449

    Article  CAS  Google Scholar 

  13. Li Y, Sun Q, Huang S Y, Cheng Z Z, Cai K, Lv J, Ma X B. Dimethyl ether carbonylation over pyridinemodified MOR: enhanced stability influenced by acidity. Catalysis Today, 2018, 311: 81–88

    Article  CAS  Google Scholar 

  14. Lee K Y, Lee S W, Ihm S K. Acid strength control in MFI zeolite for the methanolto-hydrocarbons (MTH) reaction. Industrial & Engineering Chemistry Research, 2014, 53(24): 10072–10079

    Article  CAS  Google Scholar 

  15. Opalka S M, Zhu T L. Influence of the Si/Al ratio and al distribution on the H-ZSM-5 lattice and brønsted acid site characteristics. Microporous and Mesoporous Materials, 2016, 222: 256–270

    Article  CAS  Google Scholar 

  16. Meloni D, Laforge S, Martin D, Guisnet M, Rombi E, Solinas V. Acidic and catalytic properties of H-MCM-22 zeolites: 1. Characterization of the acidity by pyridine adsorption. Applied Catalysis A, General, 2001, 215(1): 55–66

    Article  CAS  Google Scholar 

  17. Shen H B, Li Y, Huang S Y, Cai K, Cheng Z Z, Lv J, Ma X B. The carbonylation of dimethyl ether catalyzed by supported heteropoly acids: the role of Brønsted acid properties. Catalysis Today, 2019, 330: 117–123

    Article  CAS  Google Scholar 

  18. Cai K, Huang S Y, Li Y, Cheng Z Z, Lv J, Ma X B. Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2027–2034

    Article  Google Scholar 

  19. Delley B. Hardness conserving semilocal pseudopotentials. Physical Review. B, 2002, 66(15): 155125

    Article  Google Scholar 

  20. Janik M J, Campbell K A, Bardin B B, Davis R J, Neurock M. A computational and experimental study of anhydrous phosphotungstic acid and its interaction with water molecules. Applied Catalysis A, General, 2003, 256(1–2): 51–68

    Article  CAS  Google Scholar 

  21. Zhang H L, Zheng A M, Yu H G, Li S L, Lu X, Deng F. Formation, location and photocatalytic reactivity of methoxy species on keggin 12-H3PW12O40: a joint solid-state NMR spectroscopy and DFT calculation study. Journal of Physical Chemistry C, 2008, 112(40): 15765–15770

    Article  CAS  Google Scholar 

  22. Janik M J, Macht J, Iglesia E, Neurock M. Correlating acid properties and catalytic function a first-principles analysis of alcohol. Journal of Physical Chemistry C, 2009, 113: 1872–1885

    Article  CAS  Google Scholar 

  23. Carr R T, Neurock M, Iglesia E. Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. Journal of Catalysis, 2011, 278(1): 78–93

    Article  CAS  Google Scholar 

  24. Yang J, Janik M J, Ma D, Zheng A M, Zhang M J, Neurock M, Davis R J, Ye C H, Deng F. Location, acid strength and mobility of the acidic protons in keggin 12-H3PW12O40 a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. Journal of the American Chemical Society, 2005, 127: 18274–18280

    Article  CAS  Google Scholar 

  25. Macht J, Janik M J, Neurock M, Iglesia E. Catalytic consequences of composition in polyoxometalate clusters with keggin structure. Angewandte Chemie International Edition in English, 2007, 46(41): 7864–7868

    Article  CAS  Google Scholar 

  26. Yuan S P, Wang J G, Li Y W, Jiao H. Density functional investigations into the siting of Fe and the acidic properties of isomorphously substituted mordenite by B, Al, Ga and Fe. Journal of Molecular Structure THEOCHEM, 2004, 674(1): 267–274

    Article  CAS  Google Scholar 

  27. Brändle M, Sauer J. Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites. Journal of the American Chemical Society, 1998, 120(7): 1556–1570

    Article  Google Scholar 

  28. Kazantsev M S, Luzgin M V, Stepanov A G. Carbonylation of dimethyl ether with CO on solid 12-tungstophosphoric acid: in situ magic angle spinning nmr monitoring of the reaction kinetics. Journal of Physical Chemistry C, 2013, 117(21): 11168–11175

    Article  CAS  Google Scholar 

  29. Cheung P, Bhan A, Sunley G J, Iglesia E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites. Angewandte Chemie International Edition in English, 2006, 45(10): 1617–1620

    Article  CAS  Google Scholar 

  30. Cheung P, Bhan A, Sunley G, Law D, Iglesia E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 2007, 245(1): 110–123

    Article  CAS  Google Scholar 

  31. Rasmussen D B, Christensen J M, Temel B, Studt F, Moses P G, Rossmeisl J, Riisager A, Jensen A D. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite. Angewandte Chemie International Edition in English, 2015, 54(25): 7261–7264

    Article  CAS  Google Scholar 

  32. Cheng Z Z, Huang S Y, Li Y, Lv J, Cai K, Ma X B. Deactivation kinetics for the carbonylation of dimethyl ether to methyl acetate on H-MOR. Industrial & Engineering Chemistry Research, 2017, 56 (46): 13618–13627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21325626) and the Program of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Li, Y., Shen, H. et al. A density functional theory study on the mechanism of Dimethyl ether carbonylation over heteropolyacids catalyst. Front. Chem. Sci. Eng. 15, 319–329 (2021). https://doi.org/10.1007/s11705-020-1957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1957-2

Keywords

Navigation