Skip to main content
Log in

Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO2 methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal—organic frameworks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mott-Smith H M. History of “plasmas”. Nature, 1971, 233(5316): 219–219

    Article  CAS  PubMed  Google Scholar 

  2. Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 2014, 236: 348–368

    Article  CAS  Google Scholar 

  3. Hinokuma S, Misumi S, Yoshida H, Machida M. Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catalysis Science & Technology, 2015, 5(9): 4249–4257

    Article  CAS  Google Scholar 

  4. Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kreesen G, Whitehead I C, Murphy A B, Gutsol A F, Starikovskaia S. The 2012 plasma roadmap. Journal of Physics. D, Applied Physics, 2012, 45(25): 253001

    Article  CAS  Google Scholar 

  5. Kim S H, Moon S Y, Park J Y. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their application in heterogenous catalysis and photocatalysis. Topics in Catalysis, 2017, 60(12): 812–822

    Article  CAS  Google Scholar 

  6. Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies. Catalysis Today, 2002, 72(3-4): 173–184

    Article  CAS  Google Scholar 

  7. Wang Z Y, Liu C J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy, 2015, 11: 277–293

    Article  CAS  Google Scholar 

  8. Liu C J, Li M Y, Wang J Q, Zhou X T, Guo Q T, Yan J M, Li Y Z. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348

    Article  CAS  Google Scholar 

  9. Li H Q, Zou J J, Liu C J. Progress in hydrogen generation using plasmas. Progress in Chemistry, 2005, 17(1): 69–77

    CAS  Google Scholar 

  10. Bian L, Zhang L, Xia R, Li Z H. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. Journal of Natural Gas Science and Engineering, 2015, 27: 1189–1194

    Article  CAS  Google Scholar 

  11. Fu T J, Huang C D, Lv J, Li Z H. Fischer-Tropsch performance of an SiO2-supported Co-based catalyst prepared by hydrogen dielectric-barrier discharge plasma. Plasma Science & Technology, 2014, 16(3): 232–238

    Article  CAS  Google Scholar 

  12. Park S, Choe W, Moon S Y, Yoo S J. Electron characterization in weakly ionized collisional plasmas: From principles to techniques. Advances in Physics-X, 2018, 4(1): 1526114

    Google Scholar 

  13. Ouyang J, Li B, He F, Dai D. Nonlinear phenomena in dielectric barrier discharges: Pattern, striation and chaos. Plasma Science & Technology, 2018, 20(10): 103002

    Article  CAS  Google Scholar 

  14. Borra J P. Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. Journal of Aerosol Science, 2018, 125: 208–236

    Article  CAS  Google Scholar 

  15. Yi H H, Zhao S Z, Tang X L, Song C Y, Gao F Y, Zhang B W, Wang Z X, Zuo Y R. Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma. Fuel, 2014, 128: 268–273

    Article  CAS  Google Scholar 

  16. Naseh M V, Khodadadi A A, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon, 2010, 48(5): 1369–1379

    Article  CAS  Google Scholar 

  17. Chen Q, Kaneko T, Hatakeyama R. Rapid synthesis of watersoluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 2012, 521: 113–117

    Article  CAS  Google Scholar 

  18. Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Argon plasma reduced Pt nanocatalysts supported on carbon nanotube for aqueous phase benzyl alcohol oxidation. Catalysis Today, 2013, 211: 104–108

    Article  CAS  Google Scholar 

  19. Liu C J, Zhao Y, Li Y Z, Zhang D S, Chang Z, Bu X H. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3–13

    Article  CAS  Google Scholar 

  20. Ohkubo Y, Hamaguchi Y, Seino S, Nakagawa T, Kageyama S, Kugai J, Nitani H, Ueno K, Yamamoto T A. Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. Journal of Materials Science, 2013, 48(14): 5047–5054

    Article  CAS  Google Scholar 

  21. Pastor-Perez L, Belda-Alcazar V, Marini C, Pastor-Blas M M, Sepulveda-Escribana A, Ramos-Fernandez E V. Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in watergas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225: 121–127

    Article  CAS  Google Scholar 

  22. Liu C, Lan J P, Sun F L, Zhang Y H, Li J L, Hong J P. Promotion effects of plasma treatment on silica supports and catalyst precursors for cobalt Fischer-Tropsch catalysts. RSC Advances, 2016, 6(62): S7701–S7708

    Google Scholar 

  23. Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Zhang Y, Neyts E C, Cao X X, Zhang X S, Jang B W L, Liu C J. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110

    Article  CAS  Google Scholar 

  25. Sadakiyo M, Heima M, Yamamoto T, Matsumura S, Matsuura M, Sugimoto S, Kato K, Takata M, Yamauchi M. Preparation of solid-solution type Fe-Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Transactions (Cambridge, England), 2015, 44(36): 15764–15768

    Article  CAS  Google Scholar 

  26. Rosi N L, Kim J, Eddaoudi M, Chen B L, O’Keeffe M, Yaghi O M. Rod packings and metal-organic frameworks constructed from rodshaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504–1518

    Article  CAS  PubMed  Google Scholar 

  27. Gilman A B, Piskarev M S, Kuznetsov A A, Ozerin A N. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma. High Energy Chemistry, 2017, 51(2): 136–144

    Article  CAS  Google Scholar 

  28. Sun Y P, Nie Y, Yuan J, Wu A S, Shen J L, Ji D X, Yu F W, Ji J B. Application of plasma technology in the reaction of methane carbon dioxide reforming to syngas. Chemical Industry and Engineering Progress, 2010, 29(S1): 295–300

    Google Scholar 

  29. Chung W C, Chang M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renewable & Sustainable Energy Reviews, 2016, 62: 13–31

    Article  CAS  Google Scholar 

  30. Zhou T, Jang K, Jang B W L. Ionic liquid and plasma effects on SiO2 supported Pd for selective hydrogenation of acetylene. Catalysis Today, 2013, 211: 147–155

    Article  CAS  Google Scholar 

  31. Zhou C M, Wang X, Jia X L, Wang H P, Liu C J, Yang Y H. Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance. Electrochemistry Communications, 2012, 18: 33–36

    Article  CAS  Google Scholar 

  32. Platonov E A, Bratchikova I G, Yagodovskii V D, Murga Z V. Carbon dioxide reforming of methane on a cobalt catalyst subjected to plasma-chemical treatment. Russian Journal of Physical Chemistry A, 2017, 91(8): 1422–1426

    Article  CAS  Google Scholar 

  33. Wu Y W, Chung W C, Chang M B. Modification of Ni/gamma-Al2O3 catalyst with plasma for steam reforming of ethanol to generate hydrogen. International Journal of Hydrogen Energy, 2015, 40(25): 8071–8080

    Article  CAS  Google Scholar 

  34. Zhu B, Jang BWL. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A Chemical, 2014, 395: 137–144

    Article  CAS  Google Scholar 

  35. Movasati A, Alavi S M, Mazloom G. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel, 2019, 236: 1254–1262

    Article  CAS  Google Scholar 

  36. Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2018, 239: 324–333

    Article  CAS  Google Scholar 

  37. Li Z, Das S, Hongmanorom P, Dewangan N, Wai M H, Kawi S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science & Technology, 2018, 8(11): 2763–2778

    Article  CAS  Google Scholar 

  38. Tu X, Whitehead J C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 2014, 39(18): 9658–9669

    Article  CAS  Google Scholar 

  39. Lim M S, Chun Y N. Carbon dioxide destruction with methane reforming by a novel plasma-catalytic converter. Plasma Chemistry and Plasma Processing, 2016, 36(5): 1211–1228

    Article  CAS  Google Scholar 

  40. Li X S, Zhu B, Shi C, Xu Y, Zhu A M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(10): 2854–2860

    Article  CAS  Google Scholar 

  41. Zhou Z P, Zhang J M, Ye T H, Zhao P H, Xia W D. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor. Chinese Science Bulletin, 2011, 56(20): 2162–2166

    Article  CAS  Google Scholar 

  42. Li X, Tao X M, Yin Y X. An atmospheric-pressure glow-discharge plasma jet and its application. IEEE Transactions on Plasma Science, 2009, 37(6): 759–763

    Article  CAS  Google Scholar 

  43. Jo S, Lee D H, Song Y H. Product analysis of methane activation using noble gases in a non-thermal plasma. Chemical Engineering Science, 2015, 130: 101–108

    Article  CAS  Google Scholar 

  44. Park S, Lee M, Bae J, Hong D Y, Park Y K, Hwang Y K, Jeong M G, Kim Y D. Plasma-assisted non-oxidative conversion of methane over Mo/HZSM-5 catalyst in DBD reactor. Topics in Catalysis, 2017, 60(9-11): 735–742

    Article  CAS  Google Scholar 

  45. Ray D, Reddy P M K, Challapalli S. Glass beads packed DBD-plasma assisted dry reforming of methane. Topics in Catalysis, 2017, 60(12-14): 869–878

    Article  CAS  Google Scholar 

  46. Zhang K, Mukhriza T, Liu X T, Greco P P, Chiremba E. A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges. Applied Catalysis A, General, 2015, 502: 138–149

    Article  CAS  Google Scholar 

  47. Zheng X G, Tan S Y, Dong L C, Li S B, Chen H M, Wei S A. Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 2015, 137: 250–258

    Article  CAS  Google Scholar 

  48. Chung W C, Tsao I Y, Chang M B. Novel plasma photocatalysis process for syngas generation via dry reforming of methane. Energy Conversion and Management, 2018, 164: 417–428

    Article  CAS  Google Scholar 

  49. Xia Y, Lu N, Wang B, Li J, Shang K, Jiang N, Wu Y. Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge: Electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42 (36): 22776–22785

    Article  CAS  Google Scholar 

  50. Montoro-Damas A M, Brey J J, Rodríguez MA, Gonzalez-Elipe A R, Cotrino J. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296: 268–275

    Article  CAS  Google Scholar 

  51. Jin L J, Li Y, Feng Y Q, Hu H Q, Nu A M. Integrated process of coal pyrolysis with CO2 reforming of methane by spark discharge plasma. Journal of Analytical and Applied Pyrolysis, 2017, 126: 194–200

    Article  CAS  Google Scholar 

  52. Mustafa M F, Fu X D, Lu W J, Liu Y J, Abbas Y, Wang H T, Arslan M T. Application of non-thermal plasma technology on fugitive methane destruction: Configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 2018, 174: 670–677

    Article  CAS  Google Scholar 

  53. Nguyen H H, Nasonova A, Nah I W, Kim K S. Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. Journal of Industrial and Engineering Chemistry, 2015, 32: 58–62

    Article  CAS  Google Scholar 

  54. Wang B W, Sun Q M, Lu Y J, Yang M L, Yan W J. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production. Chinese Journal of Chemical Engineering, 2014, 22(1): 104–112

    Article  CAS  Google Scholar 

  55. Iwarere S A, Rohani V J, Ramjugernath D, Fulcheri L. Dry reforming of methane in a tip-tip arc discharge reactor at very high pressure. International Journal of Hydrogen Energy, 2015, 40(8): 3388–3401

    Article  CAS  Google Scholar 

  56. Xu G H, Jiang E Y, Sheng J. Technology and application of plasma. Beijing: Chemical Industry Press, 2006: 1–242 (in Chinese)

    Google Scholar 

  57. Yap D, Tatibouet J M, Batiot-Dupeyrat C. Catalyst assisted by nonthermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299: 263–271

    Article  CAS  Google Scholar 

  58. Sentek J, Krawczyk K, Mlotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K H, Schmidt-Szalowski K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 2010, 94(1-2): 19–26

    Article  CAS  Google Scholar 

  59. Kim J, Abbott M S, Go D B, Hicks J C. Enhancing C–H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Letters, 2016, 1(1): 94–99

    Article  CAS  Google Scholar 

  60. Snoeckx R, Aerts R, Tu X, Bogaerts A. Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 2013, 117 (10): 4957–4970

    Article  CAS  Google Scholar 

  61. Kim H H, Teramoto Y, Negishi N, Ogata A. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 2015, 256: 13–22

    Article  CAS  Google Scholar 

  62. Meinshausen M, Meinshausen N, Hare W, Raper S C B, Frieler K, Knutti R, Frame D J, Allen M R. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 2009, 458(7242): 1158–1162

    Article  CAS  PubMed  Google Scholar 

  63. Matthews H D, Gillett N P, Stott P A, Zickfeld K. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459(7248): 829–832

    Article  CAS  PubMed  Google Scholar 

  64. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith S J, Janetos A, Edmonds J. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324 (5931): 1183–1186

    Article  CAS  PubMed  Google Scholar 

  65. Lu Y W, Yan Q G, Han J, Cao B B, Street J, Yu F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193: 369–384

    Article  CAS  Google Scholar 

  66. Foit S R, Vinke I C, de Haart L G J, Eichel R A. Power-to-syngas: An enabling technology for the transition of the energy system? Angewandte Chemie International Edition, 2017, 56(20): 5402–5411

    Article  CAS  PubMed  Google Scholar 

  67. Wang L, Yi Y H, Guo H C, Tu X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100

    Article  CAS  Google Scholar 

  68. Saeidi S, Amin N A S, Rahimpour M R. Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 2014, 5: 66–81

    Article  CAS  Google Scholar 

  69. Federsel C, Jackstell R, Beller M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angewandte Chemie International Edition, 2010, 49(36): 6254–6257

    Article  CAS  PubMed  Google Scholar 

  70. Dimitriou I, Garcia-Gutierrez P, Elder R H, Cuellar-France R M, Azapagic A, Allen R W K. Carbon dioxide utilisation for production of transport fuels: Process and economic analysis. Energy & Environmental Science, 2015, 8(6): 1775–1789

    Article  CAS  Google Scholar 

  71. Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1): 33–52

    Article  CAS  Google Scholar 

  72. Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic-hydrogen of carbon dioxide. Nature, 1994, 368(6468): 231–233

    Article  CAS  Google Scholar 

  73. Alexmills G, Steffgen F. Catalytic methanation. Catalysis Reviews, 1974, 8(1): 159–210

    Article  Google Scholar 

  74. Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2010, 19(3): 34015–34016

    Article  CAS  Google Scholar 

  75. Pinhão N R, Janeco A, Branco J B. Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2011, 31(3): 427–439

    Article  CAS  Google Scholar 

  76. Eliasson B, Kogelschatz U, Xue B Z, Zhou L M. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357

    Article  CAS  Google Scholar 

  77. Gómez-Ramírez A, Rico V J, Cotrino J, Gonzalez-Elipe A, Lambert R M. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catalysis, 2014, 4(2): 402–408

    Article  CAS  Google Scholar 

  78. Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044

    Article  CAS  Google Scholar 

  79. Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763

    Article  CAS  Google Scholar 

  80. van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers WA, Engeln R, Graswinckel M F, Zoethout E, de Sandena M C M V. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discussions, 2015, 183: 233–248

    Article  CAS  PubMed  Google Scholar 

  81. Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Green P W, et al. Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126

    Article  CAS  Google Scholar 

  82. Silva T, Britun N, Godfroid T, Snyders R. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science & Technology, 2014, 23(2): 217–221

    Article  CAS  Google Scholar 

  83. Spencer L F, Gallimore A D. CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency. Plasma Sources Science & Technology, 2013, 22(1): 015019

    Article  CAS  Google Scholar 

  84. Ramakers M, Trenchev G, Heijkers S, Wang W Z, Bogaerts A. Gliding arc plasmatron: Providing an alternative method for carbon dioxide conversion. ChemSusChem, 2017, 10(12): 2642–2652

    Article  CAS  PubMed  Google Scholar 

  85. Li K, Liu J L, Li X S, Zhu X B, Zhu A M. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288: 671–679

    Article  CAS  Google Scholar 

  86. Liu J L, Park H W, Chung W J, Ahn W S, Park D W. Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chemical Engineering Journal, 2016, 285: 243–251

    Article  CAS  Google Scholar 

  87. Liu J L, Park H W, Chung W J, Park D W. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2016, 36(2): 437–449

    Article  CAS  Google Scholar 

  88. Shapoval V, Marotta E, Ceretta C, Konjevic N, Ivkovic M, Schiorlin M, Paradisi C. Development and testing of a selftriggered spark reactor for plasma driven dry reforming of methane. Plasma Processes and Polymers, 2014, 11(8): 787–797

    Article  CAS  Google Scholar 

  89. Zhu B, Li X S, Shi C, Liu J L, Zhao T L, Zhu A M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37(6): 4945–4954

    Article  CAS  Google Scholar 

  90. Zhu B, Li X S, Liu J L, Zhu X B, Zhu A M. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264: 445–452

    Article  CAS  Google Scholar 

  91. Lee C J, Lee D H, Kim T. Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catalysis Today, 2017, 293: 97–104

    Article  CAS  Google Scholar 

  92. Nizio M, Benrabbah R, Krzak M, Debek R, Motak M, Caavadias S, Galvez M E, Da Costa P. Low temperature hybrid plasmacatalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 2016, 83: 14–17

    Article  CAS  Google Scholar 

  93. Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez M E, Da Costa P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. International Journal of Hydrogen Energy, 2016, 41(27): 11584–11592

    Article  CAS  Google Scholar 

  94. Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67

    Article  CAS  Google Scholar 

  95. Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofmann-Caris R C H M, Maric D, Reid J P, Ceriani E, et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Science & Technology, 2016, 25(5): 1–125

    Article  CAS  Google Scholar 

  96. Bruggeman P J, Czarnetzki U. Retrospective on ‘The 2012 Plasma Roadmap’. Journal of Physics. D, Applied Physics, 2016, 49(43): 431001

    Article  CAS  Google Scholar 

  97. Aziz M A A, Jalil A A, Triwahyono S, Mukti R R, Taufiq-Yap Y H, Sazegar M R. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 2014, 147: 359–368

    Article  CAS  Google Scholar 

  98. Ren J, Guo H L, Yang J Y, Qin Z F, Lin J Y, Li Z. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Applied Surface Science, 2015, 351: 504–516

    Article  CAS  Google Scholar 

  99. Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals. II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472

    Article  CAS  Google Scholar 

  100. Upham D C, Derk A R, Sharma S, Metiu H, McFarland E W. CO2 methanation by Ru-doped ceria: The role of the oxidation state of the surface. Catalysis Science & Technology, 2015, 5(3): 1783–1791

    Article  CAS  Google Scholar 

  101. Azzolina-Jury F, Bento D, Henriques C, Thibault-Starzyk F. Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum. Journal of CO2 Utilization, 2017, 22: 97–109

    Article  CAS  Google Scholar 

  102. Jiang Q, Lin Q, Huang Z T. Study on carbon dioxide methanation catalyst III. Catalytic reaction mechanism under the action of Ni-Ru-rare earth/ZrO2. Journal of Catalysis, 1997, (3): 189–139 (in Chinese)

  103. Jwa E, Lee S B, Lee H W, Mok Y S. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 2013, 108: 89–93

    Article  CAS  Google Scholar 

  104. Speckmann F W, Mueller D, Koehler J, Birke K P. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor. Journal of CO2 Utilization, 2017, 19: 130–136

    Article  CAS  Google Scholar 

  105. Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 2015, 8(4): 702–716

    Article  CAS  PubMed  Google Scholar 

  106. Azzolina-Jury F, Thibault-Starzyk F. Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy. Topics in Catalysis, 2017, 60 (19): 1709–1721

    Article  CAS  Google Scholar 

  107. Yan X L, Bao J H, Zhao B R, Yuan C, Hu T, Huang C F, Li Y N. CO dissociation on Ni/SiO2: The formation of different carbon materials. Topics in Catalysis, 2017, 60(12-14): 890–897

    Article  CAS  Google Scholar 

  108. Dai B, Gong W M, Zhang X L, Zhang L, He R. Studies on methanation of CO2 under synergism plasma with catalyst. Chemical Journal of Chinese Universities, 2001, 22(5): 817–820 (in Chinese)

    CAS  Google Scholar 

  109. Jing L, Li Z H. Conversion of natural gas to C hydrocarbons via cold plasma technology. Journal of Energy Chemistry, 2010, 19(4): 375–379

    Google Scholar 

  110. Xu D J, Li Z H, Lv J, Wang B W, Xu G H. Methane conversion to C2 and higher hydrocarbons via dielectric-barrier discharge plasma at atmospheric pressure. Chemical Reaction Engineering & Technology, 2006, 22(4): 356–360

    Google Scholar 

  111. Lee D H, Song Y H, Kim K T, Lee J O. Comparative study of methane activation process by different plasma sources. Plasma Chemistry and Plasma Processing, 2013, 33(4): 647–661

    Article  CAS  Google Scholar 

  112. Zhang X L, Di L B, Zhou Q. Methane conversion under cold plasma over Pd-containing ionic liquids immobilized on gamma-Al2O3. Journal of Energy Chemistry, 2013, 22(3): 446–450

    Article  CAS  Google Scholar 

  113. Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chemistry, 2002, 4(2): 73–80

    Article  CAS  Google Scholar 

  114. Nozaki T, Hattori A, Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 2004, 98(4): 607–616

    Article  CAS  Google Scholar 

  115. Wang D W, Ma T C. Catalytic methane coupling of C2 hydrocarbons by glow discharge plasma. Nuclear Fusion and Plasma Physics, 2006, 4: 327–330 (in Chinese)

    Google Scholar 

  116. Goujard V, Tatibouët J M, Batiot-Dupeyrat C. Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: Effect of helium dilution and kinetic model. Plasma Chemistry and Plasma Processing, 2011, 31(2): 315–325

    Article  CAS  Google Scholar 

  117. Thanyachotpaiboon K, Chavadej S, Caldwell T A, Lobban L L, Mallinson R G. Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(10): 2252–2257

    Article  CAS  Google Scholar 

  118. Zhang A J, Zhu A M, Guo J, Xu Y, Shi C. Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 2010, 156 (3): 601–606

    Article  CAS  Google Scholar 

  119. Jo S, Lee D H, Kang S, Song Y H. Methane activation using noble gases in a dielectric barrier discharge reactor. Physics of Plasmas, 2013, 20(8): 14–31

    Article  CAS  Google Scholar 

  120. Jo S, Lee D H, Kim K T, Kang WS, Song Y H. Methane activation using Kr and Xe in a dielectric barrier discharge reactor. Physics of Plasmas, 2014, 21(10): 14–31

    Article  CAS  Google Scholar 

  121. Sudnick J J, Corwin D L. VOC control techniques. Hazardous Waste & Hazardous Materials, 1994, 11(1): 129–143

    Article  CAS  Google Scholar 

  122. Keller R A, Dyer J A. Abating halogenated VOCs. Chemical Engineering (Albany, N.Y.), 1998, 105(1): 100–105

    CAS  Google Scholar 

  123. Kim H H, Ogata A, Futamura S. Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. International Journal of Plasma Environmental Science & Technology, 2007, 1: 46–51

    Google Scholar 

  124. Dyer J A, Mulholland K. Toxic air emissions. What is the full cost to your business? Chemical Engineering Environmental Engineering, 1994, 101 (S2):4–8

    Google Scholar 

  125. Okubo M, Yamamoto T, Kuroki T, Fukumoto H. Electric air cleaner composed of nonthermal plasma reactor and electrostatic precipitator. IEEE Transactions on Industry Applications, 2001, 37 (5): 1505–1511

    Article  CAS  Google Scholar 

  126. Chang C L, Lin T S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 2005, 25(3): 227–243

    Article  CAS  Google Scholar 

  127. Ohshima T, Kondo T, Kitajima N, Sato M. Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 2010, 46 (1): 23–28

    Article  CAS  Google Scholar 

  128. Vandenbroucke A, Mora M, Morent R, De Geyter N, Leys C. TCE abatement with a plasma-catalysis combined system using MnO2 as catalyst. 21st International Symposium on Plasma Chemistry, 2013, 156: 94–100

    Google Scholar 

  129. Dinh M T N, Giraudon J M, Lamonier J F, Vandenbroucke A, De Geyter N, Leys C, Morent R. Plasma-catalysis of low TCE concentration in air using LaMnO3+δ as catalyst. Applied Catalysis B: Environmental, 2014, 147(147): 904–911

    Article  CAS  Google Scholar 

  130. Assadi A A, Bouzaza A, Vallet C, Wolbert D. Use of DBD plasma,photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254(13): 124–132

    Article  CAS  Google Scholar 

  131. Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1): 9–15

    Article  CAS  Google Scholar 

  132. Yamamoto T, Mizuno K, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 1996, 32(1): 100–105

    Article  CAS  Google Scholar 

  133. Ogata A, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T. Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 1999, 19(3): 383–394

    Article  CAS  Google Scholar 

  134. Ogata A, Ito D, Mizuno K, Kushiyamaet S, Yamamoto T. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 2001, 37(4): 959–964

    Article  CAS  Google Scholar 

  135. Oh S M, Kim H H, Einaga H, Ogata A, Futamura S, Park D W. Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 2006, 506-507: 418–422

    Article  CAS  Google Scholar 

  136. Kuroki T, Hirai K, Matsuoka S, Kim J Y, Okubo M. Oxidation system of adsorbed VOCs on adsorbent using nonthermal plasma flow. IEEE Transactions on Industry Applications, 2011, 47(4): 1916–1921

    Article  CAS  Google Scholar 

  137. Feng F D, Zheng Y Y, Shen X J, Zheng Q Z, Dai S L, Zhang X M, Huang Y F, Liu Z, Yan K P. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds. Environmental Science & Technology, 2015, 49(11): 6831–6837

    Article  CAS  Google Scholar 

  138. Sultana S, Vandenbroucke A M, Leys C, De Geyter N, Morent R. Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 2015, 5(2): 718–746

    Article  CAS  Google Scholar 

  139. Schiavon M, Torretta V, Casazza A, Ragazzi M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water, Air, and Soil Pollution, 2017, 228(10): 388

    Article  CAS  Google Scholar 

  140. Vandenbroucke A M, Morent R, De Geyter N, Leys C. Nonthermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195: 30–54

    Article  CAS  PubMed  Google Scholar 

  141. Feng X X, Liu H X, He C, Shen Z X, Wang T B. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catalysis Science & Technology, 2018, 8(4): 936–954

    Article  CAS  Google Scholar 

  142. Yang F, Li Y F, Liu T, Xu K, Zhang L Q, Xu C M, Gao J S. Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chemical Engineering Journal, 2013, 226: 52–58

    Article  CAS  Google Scholar 

  143. Liang H F, Gandi A N, Anjum D H,Wang X B, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725

    Article  CAS  PubMed  Google Scholar 

  144. Wang S Y, Wang X Y, Wang L, Pu Q S, Du W B, Guo G S. Plasma-assisted alignment in the fabrication of microchannelarray- based in-tube solid-phase microextraction microchips packed with TiO2 nanoparticles for phosphopeptide analysis. Analytica Chimica Acta, 2018, 1018: 70–77

    Article  CAS  PubMed  Google Scholar 

  145. Li S J, Li L L, Chen Z, Xue G P, Jiang L G, Zheng K, Chen J C, Li R, Yuan C, Huang M D. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification, 2018, 149: 37–42

    Article  CAS  PubMed  Google Scholar 

  146. Cong Z, Lee S. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Composite Structures, 2018, 194: 80–86

    Article  Google Scholar 

  147. Cogal S, Ela S E, Ali A K, Cogal G C, Micusik M, Omastova M, Oksuz A U. Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells. Research on Chemical Intermediates, 2018, 44(5): 3325–3335

    Article  CAS  Google Scholar 

  148. Qiu B, Yang C, Guo W H, Xu Y, Liang Z B, Ma D, Zou R Q. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 8081–8086

    Article  CAS  Google Scholar 

  149. Zhu L, Liu X Q, Jiang H L, Sun L B. Metal-organic frameworks for heterogeneous basic catalysis. Chemical Reviews, 2017, 117(12): 8129–8176

    Article  CAS  PubMed  Google Scholar 

  150. Jing P, Zhang S Y, Chen W J, Wang L, Shi W, Cheng P. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption. Chemistry-a European Journal, 2018, 24(15): 3754–3759

    Article  CAS  PubMed  Google Scholar 

  151. Carrasco J A, Romero J, Abellan G, Hernandez-Saz J, Molina S I, Marti-Gastaldo C, Coronado E. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chemical Communications, 2016, 52(58): 9141–9144

    Article  CAS  PubMed  Google Scholar 

  152. Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. H5PV2Mo10O40 encapsulated in MIL-101(Cr): Facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Transactions (Cambridge, England), 2018, 47(18): 6394–6403

    Article  CAS  Google Scholar 

  153. Zhen W L, Li B, Lu G X, Ma J T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chemical Communications, 2015, 51(9): 1728–1731

    Article  CAS  PubMed  Google Scholar 

  154. Li Y J, Miao J P, Sun X J, Xiao J, Li Y W,Wang H H, Xia Q B, Li Z. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal, 2016, 298: 191–197

    Article  CAS  Google Scholar 

  155. Zeng L, Xiao L, Long Y K, Shi X W. Trichloroacetic acidmodulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516: 274–283

    Article  CAS  PubMed  Google Scholar 

  156. Sadakiyo M, Yoshimaru S, Kasai H, Kato K, Takata M, Yamauchi M. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chemical Communications, 2016, 52(54): 8385–8388

    Article  CAS  PubMed  Google Scholar 

  157. Park K S, Ni Z, Côté A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309 (5743): 2040–2042

    Article  CAS  PubMed  Google Scholar 

  159. Kandiah M, Usseglio S, Svelle S, Olsbye U, Lillerud K P, Tilset M. Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20 (44): 9848–9851

    Article  CAS  Google Scholar 

  160. Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M. Hydrogen dissociation by gold clusters. Angewandte Chemie, 2009, 121(50): 9679–9682

    Article  Google Scholar 

  161. Bahri M, Haghighat F, Rohani S, Kazemian H. Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 2017, 320: 308–318

    Article  CAS  Google Scholar 

  162. Li B H, Yu T H, Weng C Y, Yang C C, Lin C H, Lee S. Thermal and plasma synthesis of metal oxide nanoparticles from MOFs with SERS characterization. Vibrational Spectroscopy, 2016, 84: 146–152

    Article  CAS  Google Scholar 

  163. Dou S, Dong C L, Hu Z, Huang Y C, Chen J L, Tao L, Yan D F, Chen D W, Shen C H, Chou S L, et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Advanced Functional Materials, 2017, 27(36): 1702546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Ullah, N., Hui, Y. et al. Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks. Front. Chem. Sci. Eng. 13, 444–457 (2019). https://doi.org/10.1007/s11705-019-1811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1811-6

Keywords

Navigation