Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents

Abstract

The synthesis of N-cyclohexyl carbamate-attached fluorene-alt-phenylene copolymer (PFPNCC) and the use of PFPNCC as a “ligand-free” fluorescent chemosensor for Cu(II) are described. Addition of Cu(II) can efficiently quench the fluorescence of PFPNCC in nucleophilic solvents such as DMF and DMSO, but not in low nucleophilic solvents such as 1,4-dioxane and THF. Ultraviolet-visible spectra of the mixture of the conjugated polymer and Cu(II) indicate the presence of a reduced Cu (I) ion in the solution. Furthermore, fluorescence recovery of PFPNCC observed at low temperature suggests that the quenching and reducing mechanism is most probably due to a photo-induced electron transfer from excited PFPNCC to Cu(II). Our findings provide a novel strategy for highly selective conjugated polymer-based chemosensors for various target analytes, albeit “ligand-free”.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhag A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical Reviews, 2014, 114(8): 4366–4469

    Article  CAS  Google Scholar 

  2. 2.

    Winkler J R, Gray H B. Electron flow through metalloproteins. Chemical Reviews, 2013, 114(7): 3369–3380

    Article  CAS  Google Scholar 

  3. 3.

    Rae T, Schmidt P, Pufahl R, Culotta V, O’halloran T. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 1999, 284 (5415): 805-808

    Google Scholar 

  4. 4.

    Vora S R, Guo Y, Stephens D N, Salih E, Vu E D, Kirsch K H, Sonenshein G E, Trackman P C. Characterization of recombinant lysyl oxidase propeptide. Biochemistry, 2010, 49(13): 2962–2972

    Article  CAS  Google Scholar 

  5. 5.

    Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson K O, Hedman B, Karlin K D, Solomon E I. Spectroscopic elucidation of a new heme/copper dioxygen structure type: Implications for O···O bond rupture in cytochrome c oxidase. Angewandte Chemie International Edition, 2012, 51(1): 168–172

    Article  CAS  Google Scholar 

  6. 6.

    Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters C L, Beyreuther K. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science, 1996, 271(5254): 1406–1409

    Article  CAS  Google Scholar 

  7. 7.

    Barnham K J, Bush A I. Metals in Alzheimer’s and Parkinson’s diseases. Current Opinion in Chemical Biology, 2008, 12(2): 222–228

    Article  CAS  Google Scholar 

  8. 8.

    Lee S, Barin G, Ackerman C M, Muchenditsi A, Xu J, Reimer J A, Lutsenko S, Long J R, Chang C J. Copper capture in a thioether-functionalized porous polymer applied to the detection of Wilson’s disease. Journal of the American Chemical Society, 2016, 138(24): 7603–7609

    Article  CAS  Google Scholar 

  9. 9.

    Tanzi R E, Petrukhin K, Chernov I, Pellequer J L,Wasco W, Ross B, Romano D M, Parano E, Pavone L, Brzustowicz L M, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genetics, 1993, 5(4): 344–350

    Article  CAS  Google Scholar 

  10. 10.

    Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Analytical Chemistry, 2005, 77 (22): 7294–7303

    Article  CAS  Google Scholar 

  11. 11.

    Shen Q, Zhao X, Zhou S, Hou W, Zhu J J. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+. Journal of Physical Chemistry C, 2011, 115(36): 17958–17964

    Article  CAS  Google Scholar 

  12. 12.

    Nuevo Ordóñez Y, Montes-Bayón M, Blanco-González E, Sanz-Medel A. Quantitative analysis and simultaneous activity measurements of Cu, Zn-superoxide dismutase in red blood cells by HPLCICPMS. Analytical Chemistry, 2010, 82(6): 2387–2394

    Article  CAS  Google Scholar 

  13. 13.

    Yang L, Lian C, Li X, Han Y, Yang L, Cai T, Shao C. Highly selective bifunctional luminescent sensor toward nitrobenzene and Cu2+ ion based on microporous metal-organic frameworks: Synthesis, structures, and properties. ACS Applied Materials & Interfaces, 2017, 9(20): 17208–17217

    Article  CAS  Google Scholar 

  14. 14.

    Han Y, Ding C, Zhou J, Tian Y. Single probe for imaging and biosensing of pH, Cu2+ ions, and pH/Cu2+ in live cells with ratiometric fluorescence signals. Analytical Chemistry, 2015, 87 (10): 5333–5339

    Article  CAS  Google Scholar 

  15. 15.

    Yun S H, Xia L, Edison T N, Pandurangan M, Kim D H, Kim S H, Lee Y R. Highly selective fluorescence turn-on sensor for Cu2+ ions and its application in confocal imaging of living cells. Sensors and Actuators. B, Chemical, 2017, 240: 988–995

    Article  CAS  Google Scholar 

  16. 16.

    Hsieh Y C, Chir J L, Wu H H, Guo C Q, Wu A T. Synthesis of a sugar-aza-crown ether-based cavitand as a selective fluorescent chemosensor for Cu2+ ion. Tetrahedron Letters, 2010, 51(1): 109–111

    Article  CAS  Google Scholar 

  17. 17.

    Kim H N, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chemical Society Reviews, 2011, 40(1): 79–93

    Article  CAS  Google Scholar 

  18. 18.

    McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7): 2537–2574

    Article  CAS  Google Scholar 

  19. 19.

    Álvarez-Diaz A, Salinas-Castillo A, Camprubí-Robles M, Costa-Fernández J M, Pereiro R, Mallavia R, Sanz-Medel A. Conjugated polymer microspheres for “turn-off”/“turn-on” fluorescence optosensing of inorganic ions in aqueous media. Analytical Chemistry, 2011, 83(7): 2712–2718

    Article  CAS  Google Scholar 

  20. 20.

    Dong Y, Koken B, Ma X, Wang L, Cheng Y, Zhu C. Polymer-based fluorescent sensor incorporating 2,2′-bipyridyl and benzo[2,1,3] thiadiazole moieties for Cu2+ detection. Inorganic Chemistry Communications, 2011, 14(11): 1719–1722

    Article  CAS  Google Scholar 

  21. 21.

    Xing C, Shi Z, Yu M, Wang S. Cationic conjugated polyelectrolyte-based fluorometric detection of copper (II) ions in aqueous solution. Polymer, 2008, 49(11): 2698–2703

    Article  CAS  Google Scholar 

  22. 22.

    Jeong Y, Yoon J. Recent progress on fluorescent chemosensors for metal ions. Inorganica Chimica Acta, 2012, 381: 2–14

    Article  CAS  Google Scholar 

  23. 23.

    Kaur B, Kaur N, Kumar S. Colorimetric metal ion sensors—a comprehensive review of the years 2011–2016. Coordination Chemistry Reviews, 2018, 358: 13–69

    Article  CAS  Google Scholar 

  24. 24.

    Duraisamy U, Naha S, Sivan V. Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Analytical Methods, 2017, 9: 552–578

    Article  CAS  Google Scholar 

  25. 25.

    Pu K, Fang Z, Liu B. Effect of charge density on energy-transfer properties of cationic conjugated polymers. Advanced Functional Materials, 2008, 18(8): 1321–1328

    Article  CAS  Google Scholar 

  26. 26.

    Sun P, Lin M, Zhao Y, Chen G, Jiang M. Stereoisomerism effect on sugar-lectin binding of self-assembled glyco-nanoparticles of linear and brush copolymers. Colloids and Surfaces. B, Biointerfaces, 2015, 133: 12–18

    Article  CAS  Google Scholar 

  27. 27.

    Franc G, Jutand A. On the origin of copper (I) catalysts from copper (II) precursors in C-N and C-O cross-couplings. Dalton Transactions (Cambridge, England), 2010, 39(34): 7873–7875

    Article  CAS  Google Scholar 

  28. 28.

    Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205(1): 3–40

    Article  CAS  Google Scholar 

  29. 29.

    De Santis G, Fabbrizzi L, Licchelli M, Mangano C, Sacchi D, Sardone N. A fluorescent chemosensor for the copper (II) ion. Inorganica Chimica Acta, 1997, 257(1): 69–76

    Article  CAS  Google Scholar 

  30. 30.

    Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Israel Journal of Chemistry, 1970, 8(2): 259–271

    Article  CAS  Google Scholar 

  31. 31.

    Yang G, Wang W, Wang M, Liu T. Side-chain effect on the structural evolution and properties of poly(9,9-dihexylfluorene-alt-2,5-dialkoxybenzene) copolymers. Journal of Physical Chemistry B, 2007, 111(27): 7747–7755

    Article  CAS  Google Scholar 

  32. 32.

    Richardson K A. The manufacture of high temperature superconducting tapes and films. Universal-Publishers, 1999, 4: 26–27

    Google Scholar 

  33. 33.

    Verma M, Chaudhry A F, Fahrni C J. Predicting the photo-induced electron transfer thermodynamics in polyfluorinated 1,3,5-triarylpyrazolines based on multiple linear free energy relationships. Organic & Biomolecular Chemistry, 2009, 7(8): 1536–1546

    Article  CAS  Google Scholar 

  34. 34.

    Liu Y, Minami T, Nishiyabu R, Wang Z, Anzenbacher P. Sensing of carboxylate drugs in urine by a supramolecular sensor array. Journal of the American Chemical Society, 2013, 135(20): 7705–7712

    Article  CAS  Google Scholar 

  35. 35.

    Minami T, Liu Y, Akdeniz A, Koutnik P, Esipenko N A, Nishiyabu R, Kubo Y, Anzenbacher P. Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate. Journal of the American Chemical Society, 2014, 136(32): 11396–11401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (Grant No. 2015CB932200), the National Natural Science Foundation of China (Grant Nos. 21604042, 61378081, 21574064, and 21674048), Synergetic Innovation Center for Organic Electronics and Information Displays, Jiangsu National Synergetic Innovation Center for Advanced Materials, the Natural Science Foundation of Jiangsu Province of China (No. BK20150843), NUPTSF (Nos. NY215017, NY211003, and NY215080) and the Innovation Program for Postgraduates Research of Colleges and Universities of Jiangsu Province (No. CXZZ12-0459).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Quli Fan or Tsuyoshi Minami.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Sun, P., Fan, Q. et al. Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents. Front. Chem. Sci. Eng. 14, 105–111 (2020). https://doi.org/10.1007/s11705-019-1791-6

Download citation

Keywords

  • ligand-free
  • fluorescent chemosensor
  • copper
  • photo-induced electron transfer