Plasma-enabled healing of graphene nano-platelets layer

Abstract

Graphene platelet networks (GPNs) were deposited onto silicon substrates by means of anodic arc discharge ignited between two graphite electrodes. Substrate temperature and pressure of helium atmosphere were optimized for the production of the carbon nanomaterials. The samples were modified or destroyed with different methods to mimic typical environments responsible of severe surface degradation. The emulated conditions were performed by four surface treatments, namely thermal oxidation, substrate overheating, exposition to glow discharge, and metal coating due to arc plasma. In the next step, the samples were regenerated on the same substrates with identical deposition technique. Damaging and re-growth of GPN samples were systematically characterized by scanning electron microscopy and Raman spectroscopy. The full regeneration of the structural and morphological properties of the samples has proven that this healing method by arc plasma is adequate for restoring the functionality of 2D nanostructures exposed to harsh environments.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ohring M. Materials Science of Thin Films. 2nd ed. San Diego: Academic Press, 2002

    Google Scholar 

  2. 2.

    Gordillo-Vázquez F J, Herrero V J, Tanarro I. From carbon nanostructures to new photoluminescence sources: An overview of new perspectives and emerging applications of low-pressure PECVD. Chemical Vapor Deposition, 2007, 13(6-7): 267–279

    Article  CAS  Google Scholar 

  3. 3.

    Keidar M, Beilis I I. Plasma Engineering: Applications from Aerospace to Bio- and Nanotechnology. London: Academic Press, 2013

    Google Scholar 

  4. 4.

    Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P, et al. The 2017 plasma roadmap: Low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2017, 50(32): 323001

    Article  CAS  Google Scholar 

  5. 5.

    Cvelbar U, Walsh J L, Černák M, de Vries H W, Reuter S, Belmonte T, Corbella C, Miron C, Hojnik N, Jurov A, et al. White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16(1): e1700228

    Article  CAS  Google Scholar 

  6. 6.

    Fridman A, Friedman G. Plasma Medicine. Weinheim: Wiley, 2013

    Google Scholar 

  7. 7.

    Graves D B. Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas, 2014, 21(8): 080901

    Article  CAS  Google Scholar 

  8. 8.

    Keidar M, Yan D, Beilis I I, Trink B, Sherman J H. Plasmas for treating cancer: Opportunities for adaptive and self-adaptive approaches. Trends in Biotechnology, 2018, 36(6): 586–593

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Bekeschus S, Favia P, Robert E, von Woedtke T. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Processes and Polymers, 2019, 16(1): e1800033

    Article  CAS  Google Scholar 

  10. 10.

    Azarenkov N A, Denisenko I B, Ostrikov K N. A model of a largearea planar plasma producer based on surface wave propagation in a plasma-metal structure with a dielectric sheath. Journal of Physics. D, Applied Physics, 1995, 28(12): 2465–2469

    Article  CAS  Google Scholar 

  11. 11.

    Cheng Q, Xu S, Ostrikov K K. Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas. Acta Materialia, 2010, 58(2): 560–569

    Article  CAS  Google Scholar 

  12. 12.

    Volotskova O, Fagan J A, Huh J Y, Phelan F R Jr, Shashurin A, Keidar M. Tailored distribution of single-wall carbon nanotubes from Arc plasma synthesis using magnetic fields. ACS Nano, 2010, 4(9): 5187–5192

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Keidar M, Shashurin A, Volotskova O, Raitses Y, Beilis I I. Mechanism of carbon nanostructure synthesis in arc plasma. Physics of Plasmas, 2010, 17(5): 057101

    Article  CAS  Google Scholar 

  14. 14.

    Zavada S R, McHardy N R, Gordon K L, Scott T F. Rapid, puncture-initiated healing via oxygen-mediated polymerization. ACS Macro Letters, 2015, 4(8): 819–824

    Article  CAS  Google Scholar 

  15. 15.

    Levchenko I, Xu S, Teel G, Mariotti D, Walker M L R, Keidar M. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nature Communications, 2018, 9(1): 879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Golberg D, Bai X D, Mitome M, Tang C C, Zhi C Y, Bando Y. Structural peculiarities of in situ deformation of a multiwalled BN nanotube inside a high-resolution analytical transmission electron microscope. Acta Materialia, 2007, 55(4): 1293–1298

    Article  CAS  Google Scholar 

  17. 17.

    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  CAS  Google Scholar 

  18. 18.

    Shashurin A, Keidar M. Synthesis of 2D materials in arc plasmas. Journal of Physics. D, Applied Physics, 2015, 48(31): 314007

    Article  CAS  Google Scholar 

  19. 19.

    Fang X, Shashurin A, Teel G, Keidar M. Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon, 2016, 107: 273–280

    Article  CAS  Google Scholar 

  20. 20.

    Fang X, Donahue J, Shashurin A, Keidar M. Plasma-based graphene functionalization in glow discharge. Graphene, 2015, 4(1): 1–6.

    Article  CAS  Google Scholar 

  21. 21

    Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, 2000, 61(20): 14095–14107

    Article  CAS  Google Scholar 

  22. 22.

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, et al. Raman Spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 2013, 8(4): 235–246

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Lieberman M A, Lichtenberg J A. Principles of Plasma Discharges and Material Processing. 2nd ed. Hoboken: Wiley, 2005

    Google Scholar 

  25. 25.

    Zolotukhin D B, Keidar M. Optimization of discharge triggering in micro-cathode vacuum arc thruster for CubeSats. Plasma Sources Science & Technology, 2018, 27(7): 074001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Department of Energy under SBIR program through TechX Corporation and AFOSR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carles Corbella.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Corbella, C., Zolotukhin, D.B. et al. Plasma-enabled healing of graphene nano-platelets layer. Front. Chem. Sci. Eng. 13, 350–359 (2019). https://doi.org/10.1007/s11705-018-1787-7

Download citation

Keywords

  • graphene platelet networks
  • anodic arc discharge
  • plasma healing
  • scanning electron microscopy
  • Raman spectroscopy