Skip to main content
Log in

Mass transport mechanisms within pervaporation membranes

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Pervaporation is an energy-efficient membrane technology for separating liquid molecules of similar physical properties, which may compete or combine with distillation separation technology in a number of applications. With the rapid development of new membrane materials, the pervaporation performance was significantly improved. Fundamental understanding of the mass transport mechanisms is crucial for the rational design of membrane materials and efficient intensification of pervaporation process. Based on the interactions between permeate molecules and membranes, this review focuses on two categories of mass transport mechanisms within pervaporation membranes: physical mechanism (solution-diffusion mechanism, molecular sieving mechanism) and chemical mechanism (facilitated transport mechanism). Furthermore, the optimal integration and evolution of different mass transport mechanisms are briefly introduced. Material selection and relevant applications are highlighted under the guidance of mass transport mechanisms. Finally, the current challenges and future perspectives are tentatively identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

    Article  PubMed  Google Scholar 

  2. Shao P, Huang R Y M. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179

    Article  CAS  Google Scholar 

  3. Ong Y K, Shi G M, Le N L, Tang Y P, Zuo J, Nunes S P, Chung T S. Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016, 57: 1–31

    Article  CAS  Google Scholar 

  4. Zhao J, Jin W Q. Manipulation of confined structure in alcoholpermselective pervaporation membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616–1626

    Article  Google Scholar 

  5. Cao L, He X Y, Jiang Z Y, Li X Q, Li Y F, Ren Y X, Yang L X, Wu H. Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46(22): 6725–6745

    Article  CAS  PubMed  Google Scholar 

  6. Wang J W, Dlamini D S, Mishra A K, Pendergast MT M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V. A critical review of transport through osmotic membranes. Journal of Membrane Science, 2014, 454: 516–537

    Article  CAS  Google Scholar 

  7. Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297

    Article  CAS  PubMed  Google Scholar 

  8. Chapman P D, Oliveira T, Livingston A G, Li K. Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 2008, 318(1–2): 5–37

    Article  CAS  Google Scholar 

  9. Jiang L Y, Wang Y, Chung T S, Qiao X Y, Lai J Y. Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science, 2009, 34(11): 1135–1160

    Article  CAS  Google Scholar 

  10. Zhao Q, An Q F, Ji Y L, Qian J W, Gao C J. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science, 2011, 379(1–2): 19–45

    Article  CAS  Google Scholar 

  11. Liu G P, Jin W Q, Xu N P. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Liu Y X, Wang J, Gascon J, Li J S, Van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144

    Article  CAS  PubMed  Google Scholar 

  13. Cheng X X, Pan F S, Wang M R, Li W D, Song Y M, Liu G H, Yang H, Gao B X, Wu H, Jiang Z Y. Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541: 329–346

    Article  CAS  Google Scholar 

  14. Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic-organic mixtures by pervaporation: A review. Journal of Membrane Science, 2004, 241(1): 1–21

    Article  CAS  Google Scholar 

  15. Zhang C, Peng L, Jiang J, Gu X H. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review. Chinese Journal of Chemical Engineering, 2017, 25(11): 1627–1638

    Article  Google Scholar 

  16. Wang J, Zhu S, Xu C. Biochemistry. 3rd ed. Beijing: High Education Press, 2002, 1: 201–202

    Google Scholar 

  17. Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 1998, 285(3–4): 170–173

    Article  CAS  Google Scholar 

  18. Némethy G. Hydrophobic interactions. Angewandte Chemie International Edition, 1967, 6(3): 195–206

    Article  PubMed  Google Scholar 

  19. Wijmans J G, Baker R W. The solution-diffusion model: A review. Journal of Membrane Science, 1995, 107(1–2): 1–21

    Article  CAS  Google Scholar 

  20. Hansen C M. Hansen Solubility Parameters: A User’s Handbook. Florida: CRC Press, 2007, 4–17

    Book  Google Scholar 

  21. Lodge T P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Physical Review Letters, 1999, 83(16): 3218–3221

    Article  CAS  Google Scholar 

  22. George S C, Thomas S. Transport phenomena through polymeric systems. Progress in Polymer Science, 2001, 26(6): 985–1017

    Article  CAS  Google Scholar 

  23. Wu X M, Guo H, Soyekwo F, Zhang Q G, Lin C X, Liu Q L, Zhu A M. Pervaporation purification of ethylene glycol using the highly permeable PIM-1 membrane. Journal of Chemical & Engineering Data, 2016, 61(1): 579–586

    Article  CAS  Google Scholar 

  24. Chen M M, Wu X M, Soyekwo F, Zhang Q G, Lv R X, Zhu A M, Liu Q L. Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Separation and Purification Technology, 2017, 174: 166–173

    Article  CAS  Google Scholar 

  25. Grimaldi J, Imbrogno J, Kilduff J, Belfort G. New class of synthetic membranes: Organophilic pervaporation brushes for organics recovery. Chemistry of Materials, 2015, 27(11): 4142–4148

    Article  CAS  Google Scholar 

  26. Xu Y M, Tang Y P, Chung T S, Weber M, Maletzko C. Polyarylether membranes for dehydration of ethanol and methanol via pervaporation. Separation and Purification Technology, 2018, 193: 165–174

    Article  CAS  Google Scholar 

  27. Bofinger A, Drake J A. Preferential permeability of methanol into water using polysilicone and poly(1-trimethylsilyl-1-propyne) membranes. Journal of Membrane Science, 2006, 285(1–2): 282–289

    Article  CAS  Google Scholar 

  28. Du N Y, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L, Guiver M D. Polymer nanosieve membranes for CO2-capture applications. Nature Materials, 2011, 10(5): 372–375

    Article  CAS  PubMed  Google Scholar 

  29. Tan L X, Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chemical Society Reviews, 2017, 46(11): 3322–3356

    Article  CAS  PubMed  Google Scholar 

  30. Tang Y P, Wang H, Chung T S. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol. ChemSusChem, 2015, 8(1): 138–147

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y M, Japip S, Chung T S. Mixed matrix membranes with nanosized functional UiO-66-type MOFs embedded in 6FDA-HAB/ DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549: 217–226

    Article  CAS  Google Scholar 

  32. Zhao J, Zhao X T, Jiang Z Y, Li Z, Fan X C, Zhu J N, Wu H, Su Y L, Yang D, Pan F S, Shi J. Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39 (9): 1668–1720

    Article  CAS  Google Scholar 

  33. Yang H, Wu H, Yao Z Q, Shi B B, Xu Z, Cheng X X, Pan F S, Liu G H, Jiang Z Y, Cao X Z. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 583–591

    Article  CAS  Google Scholar 

  34. Liu G H, Jiang Z Y, Cao K T, Nair S, Cheng X X, Zhao J, Gomaa H, Wu H, Pan F S. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523: 185–196

    Article  CAS  Google Scholar 

  35. Wang M R, Xing R S, Wu H, Pan F S, Zhang J J, Ding H, Jiang Z Y. Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538: 86–95

    Article  CAS  Google Scholar 

  36. Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang WC, Xu J, Deng F, Simmons J M, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angewandte Chemie International Edition, 2009, 48(50): 9457–9460

    Article  CAS  PubMed  Google Scholar 

  37. Zou X Q, Zhu G S. Microporous organic materials for membranebased gas separation. Advanced Materials, 2018, 30(3): 17000750

    Article  CAS  Google Scholar 

  38. Cheng X Q, Konstas K, Doherty C M, Wood C D, Mulet X, Xie Z L, Ng D, Hill M R, Lau C H, Shao L. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891

    Article  CAS  PubMed  Google Scholar 

  39. Zhang K, Lively R P, Zhang C, Chance R R, KorosWJ, Sholl D S, Nair S. Exploring the framework hydrophobicity and flexibility of ZIF-8: From biofuel recovery to hydrocarbon separations. Journal of Physical Chemistry Letters, 2013, 4(21): 3618–3622

    Article  CAS  Google Scholar 

  40. Zhang K, Lively R P, Zhang C, Koros W J, Chance R R. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study. Journal of Physical Chemistry C, 2013, 117(14): 7214–7225

    Article  CAS  Google Scholar 

  41. Wee L H, Li Y, Zhang K, Davit P, Bordiga S, Jiang J, Vankelecom I F J, Martens J A. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: Mechanistic insights by Monte Carlo simulation and FTIR spectroscopy. Advanced Functional Materials, 2015, 25(4): 516–525

    Article  CAS  Google Scholar 

  42. Liu X L, Li Y S, Zhu G Q, Ban Y J, Xu L Y, Yang W S. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angewandte Chemie International Edition, 2011, 50(45): 10636–10639

    Article  CAS  PubMed  Google Scholar 

  43. Fan H, Qi S, Hao Y, Ji S, Dong J, Zhang G. Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582

    Article  CAS  PubMed  Google Scholar 

  44. Sukitpaneenit P, Chung T S, Jiang L Y. Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol-water separation. Journal of Membrane Science, 2010, 362(1–2): 393–406

    Article  CAS  Google Scholar 

  45. Zhang Y L, Benes N E, Lammertink R G H. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chemical Engineering Journal, 2016, 284: 1342–1347

    Article  CAS  Google Scholar 

  46. Yong W F, Salehian P, Zhang L L, Chung T S. Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2-C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523: 430–438

    Article  CAS  Google Scholar 

  47. Friess K, Jansen J C, Vopička O, Randová A, Hynek V, Šípek M, Bartovská L, Izák P, Dingemans M, Dewulf J, et al. Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 2009, 338(1): 161–174

    Article  CAS  Google Scholar 

  48. Liu L, Kentish S E. Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. Journal of Membrane Science, 2018, 553: 63–69

    Article  CAS  Google Scholar 

  49. Mulder M. Thermodynamic Principles of Pervaporation: Pervaporation Membrane Separation Processes. Amsterdam: Elsevier, 1991, 225–250

    Google Scholar 

  50. Dawiec A, Witek-Krowiak A, Podstawczyk D, Pokomeda K. Mathematical modeling of sorption step in pervaporative aroma compounds recovery from the multicomponent solution. Chemical Engineering Science, 2015, 129: 78–90

    Article  CAS  Google Scholar 

  51. Jain M, Attarde D, Gupta S K. Removal of thiophene from nheptane/thiophene mixtures by spiral wound pervaporation module: Modelling, validation and influence of operating conditions. Journal of Membrane Science, 2015, 490: 328–345

    Article  CAS  Google Scholar 

  52. Genduso G, Farrokhzad H, Latre Y, Darvishmanesh S, Luis P, Van der Bruggen B. Polyvinylidene fluoride dense membrane for the pervaporation of methyl acetate-methanol mixtures. Journal of Membrane Science, 2015, 482: 128–136

    Article  CAS  Google Scholar 

  53. Elyassi B, Jeon M Y, Tsapatsis M, Narasimharao K, Basahel S N, Thabaiti S. Ethanol/water mixture pervaporation performance of b-oriented silicalite-1 membranes made by gel-free secondary growth. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 556–563

    Article  CAS  Google Scholar 

  54. Ashraf M T, Schmidt J E, Kujawa J, Kujawski W, Arafat H A. One-dimensional modeling of pervaporation systems using a semiempirical flux model. Separation and Purification Technology, 2017, 174: 502–512

    Article  CAS  Google Scholar 

  55. Kapteijn F, Moulijn J A, Krishna R. The generalized Maxwell-Stefan model for diffusion in zeolites: Sorbate molecules with different saturation loadings. Chemical Engineering Science, 2000, 55(15): 2923–2930

    Article  CAS  Google Scholar 

  56. Lipnizki F, Tragardh G. Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation. Separation and Purification Methods, 2001, 30(1): 49–125

    Article  CAS  Google Scholar 

  57. Mafi A, Raisi A, Hatam M, Aroujalian A. A mathematical model for mass transfer in hydrophobic pervaporation for organic compounds separation from aqueous solutions. Journal of Membrane Science, 2012, 423–424(12): 175–188

    Google Scholar 

  58. Feng H D. Modeling of vapor sorption in glassy polymers using a new dual mode sorption model based on multilayer sorption theory. Polymer, 2007, 48(10): 2988–3002

    Article  CAS  Google Scholar 

  59. Ye P, Zhang Y, Wu H, Gu X. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(7): 2468–2478

    Article  CAS  Google Scholar 

  60. Ebneyamini A, Azimi H, Tezel F H, Thibault J. Modelling of mixed matrix membranes: Validation of the resistance-based model. Journal of Membrane Science, 2017, 543: 361–369

    Article  CAS  Google Scholar 

  61. Shieh J J, Huang R Y M. A pseudophase-change solution-diffusion model for pervaporation. II. Binary mixture permeation. Separation Science and Technology, 1998, 33(7): 933–957

    Article  CAS  Google Scholar 

  62. Pera T M, Fite C, Sebastian V, Lorente E, Llorens J, Cunill F. Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes. Industrial & Engineering Chemistry Research, 2008, 47(9): 3213–3224

    Article  CAS  Google Scholar 

  63. Zhang W Y, Na S S, Li W X, Xing W H. Kinetic modeling of pervaporation aided esterification of propionic acid and ethanol using T-type zeolite membrane. Industrial & Engineering Chemistry Research, 2015, 54(18): 4940–4946

    Article  CAS  Google Scholar 

  64. Krishna R. Describing mixture permeation across polymeric membranes by a combination of Maxwell-Stefan and Flory-Huggins models. Polymer, 2016, 103: 124–131

    Article  CAS  Google Scholar 

  65. Zhuang X, Chen X, Su Y, Luo J, Feng S, Zhou H, Wan Y. Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: Preparation, characterization and modeling. Journal of Membrane Science, 2016, 499: 386–395

    Article  CAS  Google Scholar 

  66. Wang L D, Boutilier M S H, Kidambi P R, Jang D, Hadjiconstantinou N G, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522

    Article  CAS  PubMed  Google Scholar 

  67. Gao X C, Ji G Z, Wang J C, Peng L, Gu X H, Chen L. Critical pore dimensions for gases in a BTESE-derived organic-inorganic hybrid silica: A theoretical analysis. Separation and Purification Technology, 2018, 191: 27–37

    Article  CAS  Google Scholar 

  68. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

    Article  CAS  PubMed  Google Scholar 

  69. Sekulic J, Elshof J E, Blank D H A. A microporous titania membrane for nanofiltration and pervaporation. Advanced Materials, 2004, 16(17): 1546–1550

    Article  CAS  Google Scholar 

  70. Pera T M. Porous inorganic membranes for CO2 capture: Present and prospects. Chemical Reviews, 2014, 114(2): 1413–1492

    Article  CAS  Google Scholar 

  71. Nishibayashi M, Yoshida H, Uenishi M, Kanezashi M, Nagasawa H, Yoshioka T, Tsuru T. Photo-induced sol-gel processing for lowtemperature fabrication of high-performance silsesquioxane membranes for use in molecular separation. Chemical Communications, 2015, 51(49): 9932–9935

    Article  CAS  PubMed  Google Scholar 

  72. Araki S, Okabe A, Ogawa A, Gondo D, Imasaka S, Hasegawa Y, Sato K, Li K, Yamamoto H. Preparation and pervaporation performance of vinyl-functionalized silica membranes. Journal of Membrane Science, 2018, 548: 66–72

    Article  CAS  Google Scholar 

  73. Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, et al. Ultra-selective highflux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543(7647): 690–694

    Article  CAS  PubMed  Google Scholar 

  74. Kim D, Jeon M Y, Stottrup B L, Tsapatsis M. para-Xylene ultraselective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 57(2): 480–485

    CAS  Google Scholar 

  75. Furukawa H, Gandara F, Zhang Y B, Jiang J C, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metalorganic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381

    Article  CAS  PubMed  Google Scholar 

  76. Wu F C, Lin L, Liu H O, Wang H T, Qiu J S, Zhang X F. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350

    Article  CAS  Google Scholar 

  77. Liu X L, Wang C H, Wang B, Li K. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Advanced Functional Materials, 2017, 27(3): 1604311

    Article  CAS  Google Scholar 

  78. Ibrahim A, Lin Y S. Pervaporation separation of organic mixtures by MOF-5 membranes. Industrial & Engineering Chemistry Research, 2016, 55(31): 8652–8658

    Article  CAS  Google Scholar 

  79. Liu G, Jin W, Xu N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397

    Article  CAS  PubMed  Google Scholar 

  80. Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: A molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880

    Article  CAS  Google Scholar 

  81. Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S, Shin Y, Park Y, Kim D, Choi J Y, Lee H. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano, 2014, 8(5): 4580–4590

    Article  CAS  PubMed  Google Scholar 

  82. Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 7049–7052

    Article  Google Scholar 

  83. Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558

    Article  CAS  Google Scholar 

  84. Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172): 752–754

    Article  CAS  PubMed  Google Scholar 

  85. Tsou C H, An Q F, Lo S C, De G M, Hung W S, Hu C C, Lee K R, Lai J Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015, 477: 93–100

    Article  CAS  Google Scholar 

  86. Qi B Y, He X F, Zeng G F, Pan Y C, Li G H, Liu G J, Zhang Y F, Chen W, Sun Y H. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nature Communications, 2017, 8(825): 1–10

    Google Scholar 

  87. Wan J Y, Lacey S D, Dai J Q, Bao W Z, Fuhrer M S, Hu L B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chemical Society Reviews, 2016, 45(24): 6742–6765

    Article  CAS  PubMed  Google Scholar 

  88. Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383

    Article  CAS  PubMed  Google Scholar 

  89. Hung WS, Tsou C H, De G M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990

    Article  CAS  Google Scholar 

  90. Yang J J, Gong D A, Li G H, Zeng G F, Wang Q Y, Zhang Y L, Liu G J, Wu P, Vovk E, Peng Z, et al. Self-assembly of thioureacrosslinked graphene oxide framework membranes toward separation of small molecules. Advanced Materials, 2018, 30(16): 1705775

    Article  CAS  Google Scholar 

  91. Li Y,Wang S, He G,Wu H, Pan F, Jiang Z. Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44(1): 103–118

    Article  PubMed  Google Scholar 

  92. Cussler E L, Aris R, Bhown A. On the limits of facilitated diffusion. Journal of Membrane Science, 1989, 43(2): 149–164

    Article  CAS  Google Scholar 

  93. Kim H S, Kim Y J, Kim J J, Lee S D, Kang Y S, Chin C S. Spectroscopic characterization of cellulose acetate polymer membranes containing Cu(1,3-butadiene)OTf as a facilitated olefin transport carrier. Chemistry of Materials, 2001, 13(5): 1720–1725

    Article  CAS  Google Scholar 

  94. Hernandez M A J, Yang R T. Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X-and Y-zeolites. Industrial & Engineering Chemistry Research, 2004, 43(4): 1081–1089

    Article  CAS  Google Scholar 

  95. Yang Z J, Zhang W, Wang T, Li J D. Improved thiophene solution selectivity by Cu2+, Pb2+ and Mn2+ ions in pervaporative poly bis (p-methyl phenyl) phosphazene desulfurization membrane. Journal of Membrane Science, 2014, 454: 463–469

    Article  CAS  Google Scholar 

  96. Takahashi A, Yang F H, Yang R T. New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption. Industrial & Engineering Chemistry Research, 2002, 41(10): 2487–2496

    Article  CAS  Google Scholar 

  97. Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: A review. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571–2581

    Article  CAS  Google Scholar 

  98. Yang R T. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003, 191–193

    Book  Google Scholar 

  99. Martinez S, Valek L, Oslakovic I S. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle. Journal of the Electrochemical Society, 2007, 154(11): 671–677

    Article  CAS  Google Scholar 

  100. Li W, Pan F, Song Y,Wang M,Wang H,Walker S,Wu H, Jiang Z. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25(11): 1563–1580

    Article  Google Scholar 

  101. Kang Y S, Kang S W, Kim H, Kim J H, Won J, Kim C K, Char K. Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport. Advanced Materials, 2007, 19(3): 475–479

    Article  CAS  Google Scholar 

  102. Tranchemontagne D J L, Ni Z, O’Keeffe M, Yaghi O M. Reticular chemistry of metal-organic polyhedra. Angewandte Chemie International Edition, 2008, 47(28): 5136–5147

    Article  CAS  PubMed  Google Scholar 

  103. Zhou L, Dai X Q, Du J J, Wang T, Wu L G, Tang Y C, Shen J. Fabrication of poly(MMA-co-ST) hybrid membranes containing AgCl nanoparticles by in situ ionic liquid microemulsion polymerization and enhancement of their separation performance. Industrial & Engineering Chemistry Research, 2015, 54(13): 3326–3332

    Article  CAS  Google Scholar 

  104. Wu F, Cao Y, Liu H, Zhang X. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65

    Article  CAS  Google Scholar 

  105. Li B, Xu D, Jiang Z Y, Zhang X F, Liu W P, Dong X A. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline. Journal of Membrane Science, 2008, 322(2): 293–301

    Article  CAS  Google Scholar 

  106. Yu S N, Pan F S, Yang S, Ding H, Jiang Z Y, Wang B Y, Li Z X, Cao X Z. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488

    Article  CAS  Google Scholar 

  107. Zhang Y, Wang N X, Zhao C, Wang L, Ji S L, Li J R. Co(HCOO) (2)-based hybrid membranes for the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. Journal of Membrane Science, 2016, 520: 646–656

    Article  CAS  Google Scholar 

  108. Zhao C, Wang N X, Wang L, Huang H L, Zhang R, Yang F, Xie Y B, Ji S L, Li J R. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chemical Communications, 2014, 50(90): 13921–13923

    Article  CAS  PubMed  Google Scholar 

  109. Zhao C, Wang N X, Wang L, Sheng S N, Fan H W, Yang F, Ji S L, Li J R, Yu J M. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(10): 3706–3716

    Article  CAS  Google Scholar 

  110. Pan F S, Wang MD, Ding H, Song Y M, Li WD, Wu H, Jiang Z Y, Wang B Y, Cao X Z. Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552: 1–12

    Article  CAS  Google Scholar 

  111. Lee H, Dellatore S M, Miller W M, Messersmith P B. Musselinspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu W P, Li B, Cao R J, Jiang Z Y, Yu S N, Liu G H, Wu H. Enhanced pervaporation performance of poly(dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378(1–2): 382–392

    Article  CAS  Google Scholar 

  113. Liu G, Zhou T, Liu W, Hu S, Pan F, Wu H, Jiang Z, Wang B, Yang J, Cao X. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12907–12917

    Article  CAS  Google Scholar 

  114. Yu S N, Jiang Z Y, Yang S, Ding H, Zhou B F, Gu K, Yang D, Pan F S, Wang B Y, Wang S, Cao X. Highly swelling resistant membranes for model gasoline desulfurization. Journal of Membrane Science, 2016, 514: 440–449

    Article  CAS  Google Scholar 

  115. Janiak C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society-Dalton Transactions, 2000(21): 3885–3896

    Google Scholar 

  116. Hunter C A, Sanders J K M. The nature of π-π interactions. Journal of the American Chemical Society, 1990, 112(14): 5525–5534

    Article  CAS  Google Scholar 

  117. Sha S, Kong Y, Yang J R. The pervaporation performance of C-60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: Effect of operating temperature. Energy & Fuels, 2012, 26(11): 6925–6929

    Article  CAS  Google Scholar 

  118. Wu T, Wang N X, Li J, Wang L, Zhang W, Zhang G J, Ji S L. Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation. Journal of Membrane Science, 2015, 486: 1–9

    Article  CAS  Google Scholar 

  119. Gulhane H, Murthy Z V P. Separation of benzene-isooctane mixtures using poly(vinyl alcohol)/graphene composite pervaporation membranes. Journal of Polymer Materials, 2017, 34(2): 439–453

    CAS  Google Scholar 

  120. Wang T, Shen J N, Wu L G, Bruggen B V D. Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. Journal of Membrane Science, 2014, 466(18): 338–347

    Article  CAS  Google Scholar 

  121. Pan F S, Ding H, Li W D, Song Y M, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37

    Article  CAS  Google Scholar 

  122. Yang H, Yuan B, Zhang X, Scherman O A. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Accounts of Chemical Research, 2014, 47(7): 2106–2115

    Article  CAS  PubMed  Google Scholar 

  123. Liu J, Hua D, Zhang Y, Japip S, Chung T S. Precise molecular sieving architectures with janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933

    Article  CAS  Google Scholar 

  124. Takaba H, Way J D. Separation of isomeric xylenes using cyclodextrin-modified ceramic membranes. Industrial & Engineering Chemistry Research, 2003, 42(6): 1243–1252

    Article  CAS  Google Scholar 

  125. Rolling P, Lamers M, Staudt C. Cross-linked membranes based on acrylated cyclodextrins and polyethylene glycol dimethacrylates for aromatic/aliphatic separation. Journal of Membrane Science, 2010, 362(1–2): 154–163

    Article  CAS  Google Scholar 

  126. Wang Y, Chung T S, Wang H. Polyamide-imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(6): 1470–1484

    Article  CAS  Google Scholar 

  127. Van Gestel T, Barthel J. New types of graphene-based membranes with molecular sieve properties for He, H2 and H2O. Journal of Membrane Science, 2018, 554: 378–384

    Article  CAS  Google Scholar 

  128. Huang K, Liu G P, Shen J, Chu Z Y, Zhou H L, Gu X H, Jin W Q, Xu N P. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates. Advanced Functional Materials, 2015, 25(36): 5809–5815

    Article  CAS  Google Scholar 

  129. Konios D, Stylianakis M M, Stratakis E, Kymakis E. Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430: 108–112

    Article  CAS  PubMed  Google Scholar 

  130. Yang H, Wu H, Pan F S, Li Z, Ding H, Liu G H, Jiang Z Y, Zhang P, Cao X Z, Wang B Y. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520: 583–595

    Article  CAS  Google Scholar 

  131. Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83

    Article  CAS  Google Scholar 

  132. Kuila S B, Ray S K. Separation of benzene-cyclohexane mixtures by filled blend membranes of carboxymethyl cellulose and sodium alginate. Separation and Purification Technology, 2014, 123: 45–52

    Article  CAS  Google Scholar 

  133. Wang T, Zhao L, Chen Y F, Ding L F, Feng S, Wu L G, Wang Y X. Influence of modification of MWCNTs on the structure and performance of MWCNT-Poly (MMA-AM) hybrid membranes. Polymers for Advanced Technologies, 2014, 25(3): 288–293

    Article  CAS  Google Scholar 

  134. Zhang X L, Qian L P, Wang H T, Zhong W, Du Q G. Pervaporation of benzene/cyclohexane mixtures through rho-dium-loaded beta-zeolite-filled polyvinyl chloride hybrid membranes. Separation and Purification Technology, 2008, 63(2): 434–443

    Article  CAS  Google Scholar 

  135. Yu S N, Jiang Z Y, Ding H, Pan F S, Wang B Y, Yang J, Cao X Z. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81

    Article  CAS  Google Scholar 

  136. Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438(7064): 44

    Article  CAS  PubMed  Google Scholar 

  137. Sui H X, Han B G, Lee J K, Walian P, Jap B K. Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001, 414(6866): 872–878

    Article  CAS  PubMed  Google Scholar 

  138. Wen L, Zhang X, Tian Y, Jiang L. Quantum-confined superfluidics: From nature to artificial. Science China Materials, 2018, 61(8): 1027–1032

    Article  CAS  Google Scholar 

  139. Agre P. Aquaporin water channels (Nobel lecture). Angewandte Chemie International Edition, 2004, 43(33): 4278–4290

    Article  CAS  PubMed  Google Scholar 

  140. Kofinger J, Hummer G, Dellago C. Single-file water in nanopores. Physical Chemistry Chemical Physics, 2011, 13(34): 15403–15417

    Article  CAS  PubMed  Google Scholar 

  141. Horner A, Pohl P. Single-file transport of water through membrane channels. Faraday Discussions, 2018, 209: 9–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jin W Q, Yang C. Preface to special issue of membranes and membrane processes based on confined mass transfer. Chinese Journal of Chemical Engineering, 2017, 25(11): 1551

    Article  Google Scholar 

  143. Bernardina S D, Paineau E, Brubach J B, Judeinstein P, Rouziere S, Launois P, Roy P. Water in carbon nanotubes: The peculiar hydrogen bond network revealed by Infrared spectroscopy. Journal of the American Chemical Society, 2016, 138(33): 10437–10443

    Article  CAS  PubMed  Google Scholar 

  144. Sajjan A M, Kumar B K J, Kittur A A, Kariduraganavar M Y. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. Journal of Membrane Science, 2013, 425: 77–88

    Article  CAS  Google Scholar 

  145. Gao B X, Jiang Z Y, Zhao C H, Gomaa H, Pan F S. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492: 230–241

    Article  CAS  Google Scholar 

  146. Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

    Article  CAS  PubMed  Google Scholar 

  147. Hung WS, An Q F, De Guzman M, Lin H Y, Huang S H, Liu WR, Hu C C, Lee K R, Lai J Y. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68: 670–677

    Article  CAS  Google Scholar 

  148. Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932

    Article  CAS  PubMed  Google Scholar 

  149. Cao K, Jiang Z, Zhao J, Zhao C, Gao C, Pan F, Wang B, Cao X, Yang J. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014, 469: 272–283

    Article  CAS  Google Scholar 

  150. Song Y, Jiang Z, Gao B, Wang H, Wang M, He Z, Cao X, Pan F. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185: 231–242

    Article  CAS  Google Scholar 

  151. Dechnik J, Gascon J, Doonan C J, Janiak C, Sumby C J. Mixedmatrix membranes. Angewandte Chemie International Edition, 2017, 56(32): 9292–9310

    Article  CAS  PubMed  Google Scholar 

  152. Lively R P, Sholl D S. From water to organics in membrane separations. Nature Materials, 2017, 16(3): 276–279

    Article  CAS  PubMed  Google Scholar 

  153. Herm Z R, Wiers B M, Mason J A, van Baten J M, Hudson M R, Zajdel P, Brown C M, Masciocchi N, Krishna R, Long J R. Separation of hexane isomers in a metal-organic framework with triangular channels. Science, 2013, 340(6135): 960–964

    Article  CAS  PubMed  Google Scholar 

  154. Bao Z B, Chang G G, Xing H B, Krishna R, Ren Q L, Chen B L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy & Environmental Science, 2016, 9(12): 3612–3641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21621004, 21490583, and 21576189), the State Key Laboratory of Separation Membranes and Membrane Processes (Tianjin Polytechnic University) (No. M2-201606), the National Science Fund for Distinguished Young Scholars (No. 21125627), the State Key Laboratory of Chemical Engineering (No. SKL-ChE-17B01) and the Programme of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Pan, F., Li, Y. et al. Mass transport mechanisms within pervaporation membranes. Front. Chem. Sci. Eng. 13, 458–474 (2019). https://doi.org/10.1007/s11705-018-1780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1780-1

Keywords

Navigation