Skip to main content

An overview of carbon nanotubes role in heavy metals removal from wastewater

Abstract

The scarcity of water, mainly in arid and semiarid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/ wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Marques P, Rosa M, Pinheiro H. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess and Biosystems Engineering, 2000, 23(2): 135–141

    Article  CAS  Google Scholar 

  2. 2.

    Dubey R, Xavier R. Study on removal of toxic metals using various adsorbents from aqueous environment: A review. Scinzer Journal of Engineering, 2015, 1(1): 30–36

    Google Scholar 

  3. 3.

    Zahra N. Lead removal from water by low cost adsorbents: A review. Pakistan Journal of Analytical & Environmental Chemistry, 2012, 13(1): 8

    Google Scholar 

  4. 4.

    Sadegh H, Shahryari-ghoshekandi R, Tyagi I, Agarwal S, Gupta V K. Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA). Journal of Molecular Liquids, 2015, 207: 21–27

    Article  CAS  Google Scholar 

  5. 5.

    Gupta V, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Maazinejad B. Nanoparticles as adsorbent: A positive approach for removal of noxious metal ions: A review. Science. Technology and Development, 2015, 34(3): 195–214

    Article  Google Scholar 

  6. 6.

    Taghavi Fardood S, Atrak K, Ramazani A. Green synthesis using tragacanth gum and characterization of Ni-Cu-Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(14): 10739–10746

    Article  CAS  Google Scholar 

  7. 7.

    Taghavi Fardood S, Golfar Z, Ramazani A. Novel sol-gel synthesis and characterization of superparamagnetic magnesium ferrite nanoparticles using tragacanth gum as a magnetically separable photocatalyst for degradation of reactive blue 21 dye and kinetic study. Journal of Materials Science Materials in Electronics, 2017, 28(22): 17002–17008

    Article  CAS  Google Scholar 

  8. 8.

    Shayegan M E, Sorbiun M, Ramazani A, Taghavi Fardood S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science Materials in Electronics, 2017, 29(2): 1333–1340

    Article  CAS  Google Scholar 

  9. 9.

    Sorbiun M, Shayegan M E, Ramazani A, Taghavi Fardood S. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. Journal of Materials Science Materials in Electronics, 2018, 29(4): 2806–2814

    Article  CAS  Google Scholar 

  10. 10.

    Duruibe J, Ogwuegbu M, Egwurugwu J. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2007, 2(5): 112–118

    Google Scholar 

  11. 11.

    Järup L. Hazards of heavy metal contamination. British Medical Bulletin, 2003, 68(1): 167–182

    Article  PubMed  Google Scholar 

  12. 12.

    Zahir F, Rizwi S J, Haq S K, Khan R H. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 2005, 20(2): 351–360

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Langford N, Ferner R. Toxicity of mercury. Journal of Human Hypertension, 1999, 13(10): 651–656

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 2003, 97(1): 219–243

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Ernhart C B. A critical review of low-level prenatal lead exposure in the human: 1. Effects on the fetus and newborn. Reproductive Toxicology (Elmsford, N.Y.), 1992, 6(1): 9–19

    Article  CAS  Google Scholar 

  16. 16.

    Gupta V K, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-nejat O. Experimental study of surfaces of hydrogel polymers HEMA, HEMA-EEMA-MA, and PVA as adsorbent for removal of azo dyes from liquid phase. Journal of Molecular Liquids, 2015, 206: 129–136

    Article  CAS  Google Scholar 

  17. 17.

    Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Journal of Environmental & Analytical Toxicology, 2012, 2(7): 1000154

    Article  Google Scholar 

  18. 18.

    Zhao G, Li J, Ren X, Chen C, Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 2011, 45(24): 10454–10462

    Article  CAS  Google Scholar 

  19. 19.

    Lu C, Chiu H. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 2006, 61(4): 1138–1145

    Article  CAS  Google Scholar 

  20. 20.

    Tuzen M, Soylak M. Multiwalled carbon nanotubes for speciation of chromium in environmental samples. Journal of Hazardous Materials, 2007, 147(1): 219–225

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Taghavi Fardood S, Ramazani A, Moradi S, Azimzadeh A P. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(18): 13596–13601

    Article  CAS  Google Scholar 

  22. 22.

    Sorbiun M, Shayegan M E, Ramazani A, Taghavi Fardood S. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental of Research, 2018, 12(1): 29–37

    Article  Google Scholar 

  23. 23.

    Luke C. Photometric determination of antimony and thallium in lead. Analytical Chemistry, 1959, 31(10): 1680–1682

    Article  CAS  Google Scholar 

  24. 24.

    Shah K, Gupta K, Sengupta B. Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. Journal of Environmental Chemical Engineering, 2017, 5(5): 5260–5269

    Article  CAS  Google Scholar 

  25. 25.

    Reynier N, Coudert L, Blais J F, Mercier G, Besner S. Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 2015, 3(2): 977–985

    Article  CAS  Google Scholar 

  26. 26.

    Means J L, Crerar D A, Borcsik M P, Duguid J O. Adsorption of Co and selected actinides by Mn and Fe oxides in soils and sediments. Geochimica et Cosmochimica Acta, 1978, 42(12): 1763–1773

    Article  CAS  Google Scholar 

  27. 27.

    Nozaki T. Indirect colorimetric determination of Thallium. Journal of the Chemical Society of Japan. Pure Chemistry Section, 1956, 77: 493–498

    CAS  Google Scholar 

  28. 28.

    Strelow F, Victor A. Quantitative separation of Al, Ga, In, and Tl by cation exchange chromatography in hydrochloric acid-acetone. Talanta, 1972, 19(9): 1019–1023

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Matthews A, Kiley J P. The determination of thallium in silicate rocks, marine sediments and sea water. Analytica Chimica Acta, 1969, 48(1): 25–34

    Article  CAS  Google Scholar 

  30. 30.

    Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407–418

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Sato T, Sato K. Liquid-liquid extraction of indium (III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 1992, 30(1–3): 367–383

    Article  Google Scholar 

  32. 32.

    Zhang Y, Jin B, Ma B, Feng X. Separation of indium from lead smelting hazardous dust via leaching and solvent extraction. Journal of Environmental Chemical Engineering, 2017, 5(3): 2182–2188

    Article  CAS  Google Scholar 

  33. 33.

    Bidari E, Irannejad M, Gharabaghi M. Solvent extraction recovery and separation of cadmium and copper from sulphate solution. Journal of Environmental Chemical Engineering, 2013, 1(4): 1269–1274

    Article  CAS  Google Scholar 

  34. 34.

    Cheng C Y, Barnard K R, Zhang W, Zhu Z, Pranolo Y. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. Chinese Journal of Chemical Engineering, 2016, 24(2): 237–248

    Article  CAS  Google Scholar 

  35. 35.

    Yamini Y, Ashtari P, Khanchi A, Ghannadi-Maragheh M, Shamsipur M. Preconcentration of trace amounts of uranium in water samples on octadecyl silica membrane disks modified by bis (2-ethylhexyl) hydrogen phosphate and its determination by alphaspectrometry without electrodeposition. Journal of Radioanalytical and Nuclear Chemistry, 1999, 242(3): 783–786

    Article  CAS  Google Scholar 

  36. 36.

    Shamsipur M, Yamini Y, Ashtari P, Khanchi A R, Ghannadi- Marageh M. A rapid method for the extraction and separation of uranium from thorium and other accompanying elements using octadecyl silica membrane disks modified by tri-n-octyl phosphine oxide. Separation Science and Technology, 2000, 35(7): 1011–1019

    Article  CAS  Google Scholar 

  37. 37.

    Ashtari P, Wang K, Yang X, Ahmadi S J. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles. Analytica Chimica Acta, 2009, 646(1): 123–127

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Knyazkova T, Kavitskaya A. Improved performance of reverse osmosis with dynamic layers onto membranes in separation of concentrated salt solutions. Desalination, 2000, 131(1–3): 129–136

    Article  CAS  Google Scholar 

  39. 39.

    Ersahin M E, Ozgun H, Dereli R K, Ozturk I, Roest K, van Lier J B. A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 2012, 122: 196–206

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Khosravi J, Alamdari A. Copper removal from oil-field brine by coprecipitation. Journal of Hazardous Materials, 2009, 166(2): 695–700

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Al-Rashdi B, Somerfield C, Hilal N. Heavy metals removal using adsorption and nanofiltration techniques. Separation and Purification Reviews, 2011, 40(3): 209–259

    Article  CAS  Google Scholar 

  42. 42.

    Elsehly E, Chechenin N, Makunin A, Vorobyeva E, Motaweh H. Oxidized carbon nanotubes filters for iron removal from aqueous solutions. International Journal of New Technologies in Science and Engineering, 2015, 2(2): 14–18

    Google Scholar 

  43. 43.

    Hossini H, Rezaee A, Mohamadiyan G. Hexavalent chromium removal from aqueous solution using functionalized multi-walled carbon nanotube: Optimization of parameters by response surface methodology. Health Scope, 2015, 4(1): e19892

    Article  Google Scholar 

  44. 44.

    Mohammadi T, Razmi A, Sadrzadeh M. Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 2004, 167: 379–385

    Article  CAS  Google Scholar 

  45. 45.

    Barakat M. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011, 4(4): 361–377

    Article  CAS  Google Scholar 

  46. 46.

    Deliyanni E, Peleka E, Matis K. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of Hazardous Materials, 2007, 141(1): 176–184

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Mobasherpour I, Salahi E, Ebrahimi M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Research on Chemical Intermediates, 2012, 38(9): 2205–2222

    Article  CAS  Google Scholar 

  48. 48.

    Liu C, Bai R, San Ly Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Research, 2008, 42(6): 1511–1522

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Gupta V, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Goodarzi M, Garshasbi A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: A review. Critical Reviews in Environmental Science and Technology, 2016, 46(2): 93–118

    Article  CAS  Google Scholar 

  50. 50.

    Li Y H, Di Z, Ding J, Wu D, Luan Z, Zhu Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 2005, 39(4): 605–609

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Imamoglu M, Tekir O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 2008, 228(1–3): 108–113

    Article  CAS  Google Scholar 

  52. 52.

    Ihsanullah, Al-Khaldi F A, Abu-Sharkh B, Abulkibash A M, Qureshi M I, Laoui T, Atieh M A. Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 2016, 57(16): 7232–7244

    Article  CAS  Google Scholar 

  53. 53.

    Hasar H. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 2003, 97(1): 49–57

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001, 24 (3): 497–505

    Article  CAS  Google Scholar 

  55. 55.

    Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 2004, 279 (2): 307–313

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Shamsijazeyi H, Kaghazchi T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 852–858

    Article  CAS  Google Scholar 

  57. 57.

    Goyal M, Bhagat M, Dhawan R. Removal of mercury from water by fixed bed activated carbon columns. Journal of Hazardous Materials, 2009, 171(1): 1009–1015

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Di Natale F, Erto A, Lancia A, Musmarra D. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. Journal of Hazardous Materials, 2011, 192 (3): 1842–1850

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Biškup B, Subotic B. Removal of heavy metal ions from solutions using zeolites. III. Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Separation Science and Technology, 2005, 39(4): 925–940

    Article  CAS  Google Scholar 

  60. 60.

    Bottero J Y, Rose J, Wiesner M R. Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2006, 2 4): 391–395

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Justi K C, Fávere V T, Laranjeira M C, Neves A, Peralta R A. Kinetics and equilibrium adsorption of Cu (II), Cd (II), and Ni (II) ions by chitosan functionalized with 2 [-bis-(pyridylmethyl) aminomethyl]-4-methyl-6-formylphenol. Journal of Colloid and Interface Science, 2005, 291(2): 369–374

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Ngah W W, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4): 1446–1456

    Article  CAS  Google Scholar 

  63. 63.

    Hawari A H, Mulligan C N. Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresource Technology, 2006, 97(4): 692–700

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Brown P, Jefcoat I A, Parrish D, Gill S, Graham E. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 2000, 4(1): 19–29

    Article  Google Scholar 

  65. 65.

    Diniz C V, Doyle F M, Ciminelli V S. Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Separation Science and Technology, 2002, 37(14): 3169–3185

    Article  CAS  Google Scholar 

  66. 66.

    Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 2003, 37(4): 948–952

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Kim E J, Lee C S, Chang Y Y, Chang Y S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 2013, 5(19): 9628–9634

    Article  CAS  Google Scholar 

  68. 68.

    Ekmekyapar F, Aslan A, Bayhan Y K, Cakici A. Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. Journal of Hazardous Materials, 2006, 137(1): 293–298

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Ekmekyapar F, Aslan A, Bayhan Y, Cakici A. Biosorption of Pb (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. International Journal of Environmental of Research, 2012, 6(2): 417–424

    CAS  Google Scholar 

  70. 70.

    Li Q, Wu S, Liu G, Liao X, Deng X, Sun D, Hu Y, Huang Y. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 2004, 34(1): 135–142

    Article  CAS  Google Scholar 

  71. 71.

    Ho Y, McKay G. The sorption of lead (II) ions on peat. Water Research, 1999, 33(2): 578–584

    Article  CAS  Google Scholar 

  72. 72.

    Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Separation and Purification Technology, 2006, 50(1): 132–140

    Article  CAS  Google Scholar 

  73. 73.

    Karnitz O Jr, Gurgel L V A, De Melo J C P, Botaro V R, Melo TM S, de Freitas Gil R P, Gil L F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 2007, 98(6): 1291–1297

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    An H, Park B, Kim D. Crab shell for the removal of heavy metals from aqueous solution. Water Research, 2001, 35(15): 3551–3556

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Huang J, Li Y, Cao Y, Peng F, Cao Y, Shao Q, Liu H, Guo Z. Hexavalent chromium removal over magnetic carbon nanoadsorbent: Synergistic effect of fluorine and nitrogen Co-doping. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 13062–13074

    Article  CAS  Google Scholar 

  76. 76.

    Gong K, Hu Q, Yao L, Li M, Sun D, Shao Q, Qiu B, Guo Z. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr (VI) removal from wastewater. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7283–7291

    Article  CAS  Google Scholar 

  77. 77.

    Gong K, Hu Q, Xiao Y, Cheng X, Liu H, Wang N, Qiu B, Guo Z. Triple layered core–shell ZVI@ carbon@ polyaniline composite enhanced electron utilization in Cr (VI) reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(24): 11119–11128

    CAS  Google Scholar 

  78. 78.

    Wang Y P, Zhou P, Luo S Z, Liao X P, Wang B, Shao Q, Guo X, Guo Z. Controllable synthesis of monolayer poly (acrylic acid) on channel surface of mesoporous alumina for Pb (II) adsorption. Langmuir, 2018, 34(26): 7859–7868

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Huang J, Cao Y, Shao Q, Peng X, Guo Z. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs. particulate structures. Industrial & Engineering Chemistry Research, 2017, 56(38): 10689–10701

    Article  CAS  Google Scholar 

  80. 80.

    Wang Y P, Zhou P, Luo S Z, Guo S, Lin J, Shao Q, Guo X, Liu Z, Shen J, Wang B, Guo Z. In situ polymerized poly (acrylic acid)/ alumina nanocomposites for Pb2+ adsorption. Advances in Polymer Technology, 2018, doi: https://doi.org/10.1002/adv.21969

    Google Scholar 

  81. 81.

    Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, Guo S, Sun K, Guo X, Wujcik E K, Guo Z. Porous lignin based poly (acrylic acid)/ organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer, 2017, 128: 12–23

    Article  CAS  Google Scholar 

  82. 82.

    Abdel G H H, Ali G A, Fouad O A, Makhlouf S A. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 2015, 53(11): 2980–2989

    Article  CAS  Google Scholar 

  83. 83.

    Arias M, Barral M, Mejuto J. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 2002, 48(10): 1081–1088

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Rao M M, Ramesh A, Rao G P C, Seshaiah K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 2006, 129(1): 123–129

    PubMed  Google Scholar 

  85. 85.

    Cao C Y, Cui Z M, Chen C Q, Song W G, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. Journal of Physical Chemistry C, 2010, 114(21): 9865–9870

    Article  CAS  Google Scholar 

  86. 86.

    Nakamoto K, Ohshiro M, Kobayashi T. Mordenite zeolite- Polyethersulfone composite fibers developed for decontamination of heavy metal ions. Journal of Environmental Chemical Engineering, 2017, 5(1): 513–525

    Article  CAS  Google Scholar 

  87. 87.

    Mudasir M, Karelius K, Aprilita N H, Wahyuni E T. Adsorption of mercury (II) on dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 2016, 4(2): 1839–1849

    Article  CAS  Google Scholar 

  88. 88.

    Nguyen T C, Loganathan P, Nguyen T V, Vigneswaran S, Kandasamy J, Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixedbed column studies. Chemical Engineering Journal, 2015, 270: 393–404

    Article  CAS  Google Scholar 

  89. 89.

    Ren X, Chen C, Nagatsu M, Wang X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 2011, 170(2): 395–410

    Article  CAS  Google Scholar 

  90. 90.

    Yang S T, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H, Liu Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 2008, 181(3): 182–189

    Article  CAS  PubMed  Google Scholar 

  91. 91.

    Qin L, Huang Q, Wei Z, Wang L, Wang Z. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to daphnia magna. Environmental Toxicology and Pharmacology, 2014, 38(1): 199–204

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Hu C, Zhang L, Wang W, Cui Y, Li M. Evaluation of the combined toxicity of multi-walled carbon nanotubes and sodium pentachlorophenate on the earthworm Eisenia fetida using avoidance bioassay and comet assay. Soil Biology & Biochemistry, 2014, 70: 123–130

    Article  CAS  Google Scholar 

  93. 93.

    Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45(7): 1419–1424

    Article  CAS  Google Scholar 

  94. 94.

    Alagappan P N, Heimann J, Morrow L, Andreoli E, Barron A R. Easily regenerated readily deployable absorbent for heavy metal removal from contaminated water. Scientific Reports, 2017, 7(1): 6682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wang T, Weissman J, Ramesh G, Varadarajan R, Benemann J. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 1996, 57(5): 779–786

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Bhattacharya K, Mukherjee S P, Gallud A, Burkert S C, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12 (2): 333–351

    Article  CAS  PubMed  Google Scholar 

  97. 97.

    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  CAS  Google Scholar 

  98. 98.

    Sadegh H, Ali G A, Gupta V K, Makhlouf A S H, Shahryarighoshekandi R, Nadagouda M N, Sillanpää M, Megiel E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 2017, 7(1): 1–14

    Article  CAS  Google Scholar 

  99. 99.

    Wiesner M, Bottero J Y. Environmental Nanotechnology. New York: McGraw-Hill Professional Publishing, 2007

    Google Scholar 

  100. 100.

    Khan Z H, Husain M. Carbon nanotube and its possible applications. Indian Journal of Engineering and Materials Sciences, 2005, 12(6): 529–551

    CAS  Google Scholar 

  101. 101.

    Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z. Flexible polydimethylsiloxane/ multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer, 2017, 125: 50–57

    Article  CAS  Google Scholar 

  102. 102.

    Luo Q, Ma H, Hao F, Hou Q, Ren J, Wu L, Yao Z, Zhou Y, Wang N, Jiang K, Lin H, Guo Z. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Advanced Functional Materials, 2017, 27(42): 1703068

    Article  CAS  Google Scholar 

  103. 103.

    Wu Z, Gao S, Chen L, Jiang D, Shao Q, Zhang B, Zhai Z, Wang C, Zhao M, Ma Y, Zhang X, Weng L, Zhang M, Guo Z. Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@ MWCNTs and montmorillonite bifillers. Macromolecular Chemistry and Physics, 2017, 218(23): 1700357

    Article  CAS  Google Scholar 

  104. 104.

    Zhang K, Li G H, Feng L M, Wang N, Guo J, Sun K, Yu K X, Zeng J B, Li T, Guo Z, Wang M. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly (Llactide)/ multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(36): 9359–9369

    Article  CAS  Google Scholar 

  105. 105.

    Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Applied Materials & Interfaces, 2016, 8(22): 14150–14159

    Article  CAS  Google Scholar 

  106. 106.

    He Y, Yang S, Liu H, Shao Q, Chen Q, Lu C, Jiang Y, Liu C, Guo Z. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. Journal of Colloid and Interface Science, 2018, 517: 40–51

    Article  CAS  PubMed  Google Scholar 

  107. 107.

    Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(9): 2318–2328

    Article  CAS  Google Scholar 

  108. 108.

    Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(9): 2258–2269

    Article  CAS  Google Scholar 

  109. 109.

    Zhou B, Li Y, Dai K, Zheng G, Liu C, Ma Y, Zhang J X, Wang N, Shen C, Guo Z. Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite film for switchable thermochromic applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(31): 8360–8371

    Article  CAS  Google Scholar 

  110. 110.

    Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q, Li J, Wang N, Guo Z. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochimica Acta, 2018, 260: 65–72

    Article  CAS  Google Scholar 

  111. 111.

    Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Ryu J E, Shankar A, Li T, Yan C, Guo Z. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Composites Science and Technology, 2018, 154: 28–36

    Article  CAS  Google Scholar 

  112. 112.

    Zheng F, Baldwin D L, Fifield L S, Anheier N C, Aardahl C L, Grate J W. Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Analytical Chemistry, 2006, 78 (7): 2442–2446

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Zhou Q, Wang W, Xiao J. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Analytica Chimica Acta, 2006, 559(2): 200–206

    Article  CAS  Google Scholar 

  114. 114.

    Liang P, Ding Q, Song F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. Journal of Separation Science, 2005, 28(17): 2339–2343

    Article  CAS  PubMed  Google Scholar 

  115. 115.

    Liang P, Liu Y, Guo L, Zeng J, Lu H. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19(11): 1489–1492

    Article  CAS  Google Scholar 

  116. 116.

    Li Y H, Wang S, Luan Z, Ding J, Xu C, Wu D. Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5): 1057–1062

    Article  CAS  Google Scholar 

  117. 117.

    Tavallali H, Fakhraee V. Preconcentration and determination of trace amounts of Cd2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2011, 3(3): 1628–1634

    CAS  Google Scholar 

  118. 118.

    Pu Y, Yang X, Zheng H, Wang D, Su Y, He J. Adsorption and desorption of thallium (I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 2013, 219: 403–410

    Article  CAS  Google Scholar 

  119. 119.

    Tavallali H. Preconcentration and determination of trace amounts of Ag+ and Pb2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2013, 5(1): 105–108

    CAS  Google Scholar 

  120. 120.

    Ouyang M, Huang J L, Lieber C M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Physical Review Letters, 2002, 88(6): 066804

    Article  CAS  PubMed  Google Scholar 

  121. 121.

    Wan X, Dong J, Xing D. Optical properties of carbon nanotubes. Physical Review. B, 1998, 58(11): 6756–6759

    Article  CAS  Google Scholar 

  122. 122.

    Chen C, Wang X. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 2006, 45(26): 9144–9149

    Article  CAS  Google Scholar 

  123. 123.

    Al-Hakami S M, Khalil A B, Laoui T, Atieh MA. Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorganic Chemistry and Applications, 2013, 2013: 1–9

    Article  CAS  Google Scholar 

  124. 124.

    Hou P X, Liu C, Cheng H M. Purification of carbon nanotubes. Carbon, 2008, 46(15): 2003–2025

    Article  CAS  Google Scholar 

  125. 125.

    Ngo C L, Le Q T, Ngo T T, Nguyen D N, Vu M T. Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3): 035017

    Google Scholar 

  126. 126.

    Ouni L, Mirzaei M, Ashtari P, Ramazani A, Rahimi M, Bolourinovin F. Isocyanate functionalized multiwalled carbon nanotubes for separation of lead from cyclotron production of thallium-201. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 633–643

    Article  CAS  Google Scholar 

  127. 127.

    Huang Y Y, Terentjev E M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers, 2012, 4(1): 275–295

    Article  CAS  Google Scholar 

  128. 128.

    Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chemical Reviews, 2006, 106(3): 1105–1136

    Article  CAS  PubMed  Google Scholar 

  129. 129.

    Popuri S R, Frederick R, Chang C Y, Fang S S, Wang C C, Lee L C. Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalination and Water Treatment, 2014, 52(4–6): 691–701

    Article  CAS  Google Scholar 

  130. 130.

    Koh B, Cheng W. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium. Langmuir, 2014, 30(36): 10899–10909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Es’haghi Z, Golsefidi M A, Saify A, Tanha A A, Rezaeifar Z, Alian-Nezhadi Z. Carbon nanotube reinforced hollow fiber solid/ liquid phase microextraction: A novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography. Journal of Chromatography. A, 2010, 1217(17): 2768–2775

    Article  CAS  PubMed  Google Scholar 

  132. 132.

    Fu L, Yu A. Carbon nanotubes based thin films: Fabrication, characterization and applications. Reviews on Advanced Materials Science, 2014, 36: 40–61

    CAS  Google Scholar 

  133. 133.

    Chen C, Liang B, Ogino A, Wang X, Nagatsu M. Oxygen functionalization of multiwall carbon nanotubes by microwaveexcited surface-wave plasma treatment. Journal of Physical Chemistry C, 2009, 113(18): 7659–7665

    Article  CAS  Google Scholar 

  134. 134.

    Nair L G, Mahapatra A S, Gomathi N, Joseph K, Neogi S, Nair C R. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube. Applied Surface Science, 2015, 340: 64–71

    Article  CAS  Google Scholar 

  135. 135.

    Mishra P, Islam S. Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy. Superlattices and Microstructures, 2013, 64: 399–407

    Article  CAS  Google Scholar 

  136. 136.

    Saka C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Critical Reviews in Analytical Chemistry, 2018, 48(1): 1–14

    Article  CAS  PubMed  Google Scholar 

  137. 137.

    Babu D J, Yadav S, Heinlein T, Cherkashinin G, Schneider J J. Schneider Jr J. Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes. Journal of Physical Chemistry C, 2014, 118(22): 12028–12034

    Article  CAS  Google Scholar 

  138. 138.

    Talapatra S, Zambano A, Weber S, Migone A. Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Physical Review Letters, 2000, 85(1): 138–141

    Article  CAS  PubMed  Google Scholar 

  139. 139.

    Byl O, Kondratyuk P, Forth S T, FitzGerald S A, Chen L, Johnson J K, Yates J T. Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: A vibrational spectroscopy study. Journal of the American Chemical Society, 2003, 125(19): 5889–5896

    Article  CAS  PubMed  Google Scholar 

  140. 140.

    Muris M, Dupont-Pavlovsky N, Bienfait M, Zeppenfeld P. Where are the molecules adsorbed on single-walled nanotubes? Surface Science, 2001, 492(1): 67–74

    Article  CAS  Google Scholar 

  141. 141.

    Fujiwara A, Ishii K, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Achiba Y. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters, 2001, 336(3): 205–211

    Article  CAS  Google Scholar 

  142. 142.

    Muris M, Dufau N, Bienfait M, Dupont-Pavlovsky N, Grillet Y, Palmari J. Methane and krypton adsorption on single-walled carbon nanotubes. Langmuir, 2000, 16(17): 7019–7022

    Article  CAS  Google Scholar 

  143. 143.

    Rawat D S, Calbi M M, Migone A D. Equilibration time: Kinetics of gas adsorption on closed-and open-ended single-walled carbon nanotubes. Journal of Physical Chemistry C, 2007, 111(35): 12980–12986

    Article  CAS  Google Scholar 

  144. 144.

    Wang H, Zhou A, Peng F, Yu H, Chen L. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (II) in aqueous solution. Materials Science and Engineering A, 2007, 466(1): 201–206

    Article  CAS  Google Scholar 

  145. 145.

    Ulbricht H, Kriebel J, Moos G, Hertel T. Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chemical Physics Letters, 2002, 363(3): 252–260

    Article  CAS  Google Scholar 

  146. 146.

    Babaa M, Stepanek I, Masenelli-Varlot K, Dupont-Pavlovsky N, McRae E, Bernier P. Opening of single-walled carbon nanotubes: Evidence given by krypton and xenon adsorption. Surface Science, 2003, 531(1): 86–92

    Article  CAS  Google Scholar 

  147. 147.

    Kosa S A, Al-Zhrani G, Salam M A. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 2012, 181: 159–168

    Article  CAS  Google Scholar 

  148. 148.

    Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K S. Waterdispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979–3986

    Article  CAS  PubMed  Google Scholar 

  149. 149.

    Saeidi N, Parvini M, Niavarani Z. High surface area and mesoporous graphene/activated carbon composite for adsorption of Pb (II) from wastewater. Journal of Environmental Chemical Engineering, 2015, 3(4): 2697–2706

    Article  CAS  Google Scholar 

  150. 150.

    Ansari M O, Kumar R, Ansari S A, Ansari S P, Barakat M, Alshahrie A, Cho M H. Anion selective pTSA doped polyaniline@ graphene oxide-multiwalled carbon nanotube composite for Cr (VI) and Congo red adsorption. Journal of Colloid and Interface Science, 2017, 496: 407–415

    Article  CAS  PubMed  Google Scholar 

  151. 151.

    Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. Journal of Hazardous Materials, 2017, 336: 146–157

    Article  CAS  PubMed  Google Scholar 

  152. 152.

    Tofighy M A, Mohammadi T. Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets. Desalination and Water Treatment, 2016, 57(33): 15384–15396

    Article  CAS  Google Scholar 

  153. 153.

    Kanthapazham R, Ayyavu C, Mahendiradas D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalination and Water Treatment, 2016, 57(36): 16871–16885

    CAS  Google Scholar 

  154. 154.

    Lasheen M, El-Sherif I Y, Sabry D Y, El-Wakeel S, El-Shahat M. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics. Desalination and Water Treatment, 2015, 53(13): 3521–3530

    Article  CAS  Google Scholar 

  155. 155.

    Jiang L, Yu H, Zhou X, Hou X, Zou Z, Li S, Li C, Yao X. Preparation, characterization, and adsorption properties of magnetic multi-walled carbon nanotubes for simultaneous removal of lead (II) and zinc (II) from aqueous solutions. Desalination and Water Treatment, 2016, 57(39): 18446–18462

    Article  CAS  Google Scholar 

  156. 156.

    Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H. A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd(II) removal from aqueous solutions. Journal of Environmental Chemical Engineering, 2017, 5(4): 3405–3417

    Article  CAS  Google Scholar 

  157. 157.

    Mubarak N, Alicia R, Abdullah E, Sahu J, Haslija A A, Tan J. Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental Chemical Engineering, 2013, 1(3): 486–495

    Article  CAS  Google Scholar 

  158. 158.

    Park W K, Yoon Y, Kim S, Yoo S, Do Y, Kang J W, Yoon D H, Yang W S. Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. Journal of Environmental Chemical Engineering, 2016, 4(3): 3246–3252

    Article  CAS  Google Scholar 

  159. 159.

    Varghese S S, Varghese S H, Swaminathan S, Singh K K, Mittal V. Two-dimensional materials for sensing: Graphene and beyond. Electronics (Basel), 2015, 4(3): 651–687

    CAS  Google Scholar 

  160. 160.

    Mu C, Song J, Wang B, Zhang C, Xiang J, Wen F, Liu Z. Twodimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology, 2017, 29 (2): 025704

    Article  CAS  Google Scholar 

  161. 161.

    Saadat S, Karimi-Jashni A, Doroodmand M M. Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions. Journal of Environmental Chemical Engineering, 2014, 2(4): 2059–2067

    Article  CAS  Google Scholar 

  162. 162.

    Sankararamakrishnan N, Gupta A, Vidyarthi S R. Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. Journal of Environmental Chemical Engineering, 2014, 2(2): 802–810

    Article  CAS  Google Scholar 

  163. 163.

    Sobhanardakani S, Zandipak R, Cheraghi M. Adsorption of Cu2+ ions from aqueous solutions using oxidized multi-walled carbon nanotubes. Avicenna Journal of Environmental Health Engineering, 2015, 2(1): e790

    Article  Google Scholar 

  164. 164.

    AlOmar M K, Alsaadi M A, Hayyan M, Akib S, Hashim M A. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Applied Surface Science, 2016, 389: 216–226

    Article  CAS  Google Scholar 

  165. 165.

    Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. Journal of Molecular Liquids, 2016, 224(Part A): 1032–1040

    Article  CAS  Google Scholar 

  166. 166.

    Asadollahi N, Yavari R, Ghanadzadeh H. Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2445–2455

    CAS  Google Scholar 

  167. 167.

    Al Hamouz O C S, Adelabu I O, Saleh T A. Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. Journal of Environmental Management, 2017, 192: 163–170

    Article  CAS  PubMed  Google Scholar 

  168. 168.

    Yang W, Ding P, Zhou L, Yu J, Chen X, Jiao F. Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Applied Surface Science, 2013, 282: 38–45

    Article  CAS  Google Scholar 

  169. 169.

    Bandaru N M, Reta N, Dalal H, Ellis A V, Shapter J, Voelcker N H. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261: 534–541

    Article  CAS  PubMed  Google Scholar 

  170. 170.

    Sankararamakrishnan N, Jaiswal M, Verma N. Composite nano- floral clusters of carbon nanotubes and activated alumina: An efficient sorbent for heavy metal removal. Chemical Engineering Journal, 2014, 235: 1–9

    Article  CAS  Google Scholar 

  171. 171.

    Saadi R, Saadi Z, Fazaeli R, Fard N E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 2015, 32(5): 787–799

    Article  CAS  Google Scholar 

  172. 172.

    Moghaddam H K, Pakizeh M. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 21: 221–229

    Article  CAS  Google Scholar 

  173. 173.

    Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 2012, 3(1): 38–45

    Article  CAS  Google Scholar 

  174. 174.

    Velickovic Z S, Marinkovic A D, Bajic Z J, Markovic J M, Peric-Grujic A A, Uskokovic P S, Ristic M D. Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water. Separation Science and Technology, 2013, 48(13): 2047–2058

    Article  CAS  Google Scholar 

  175. 175.

    Ren X, Li J, Tan X, Wang X. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions (Cambridge, England), 2013, 42(15): 5266–5274

    Article  CAS  Google Scholar 

  176. 176.

    Jung C, Heo J, Han J, Her N, Lee S J, Oh J, Ryu J, Yoon Y. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology, 2013, 106: 63–71

    Article  CAS  Google Scholar 

  177. 177.

    Liu Z, Chen L, Zhang Z, Li Y, Dong Y, Sun Y. Synthesis of multiwalled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. Journal of Molecular Liquids, 2013, 179: 46–53

    Article  CAS  Google Scholar 

  178. 178.

    Pillay K, Cukrowska E, Coville N. Improved uptake of mercury by sulphur-containing carbon nanotubes. Microchemical Journal, 2013, 108: 124–130

    Article  CAS  Google Scholar 

  179. 179.

    Ramana D V, Yu J S, Seshaiah K. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (II) and Cd (II) from water: Surface, kinetic, equilibrium, and thermal adsorption properties. Chemical Engineering Journal, 2013, 223: 806–815

    Article  CAS  Google Scholar 

  180. 180.

    Chen B, Zhu Z, Ma J, Qiu Y, Chen J. Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(37): 11355–11367

    Article  CAS  Google Scholar 

  181. 181.

    Gupta A, Vidyarthi S, Sankararamakrishnan N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2014, 274: 132–144

    Article  CAS  PubMed  Google Scholar 

  182. 182.

    Hadavifar M, Bahramifar N, Younesi H, Li Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal, 2014, 237: 217–228

    Article  CAS  Google Scholar 

  183. 183.

    Ge Y, Li Z, Xiao D, Xiong P, Ye N. Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1765–1771

    Article  CAS  Google Scholar 

  184. 184.

    Chen P H, Hsu C F, Tsai D D W, Lu Y M, Huang W J. Adsorption of mercury from water by modified multi-walled carbon nanotubes: Adsorption behaviour and interference resistance by coexisting anions. Environmental Technology, 2014, 35(15): 1935–1944

    Article  CAS  PubMed  Google Scholar 

  185. 185.

    Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S, Yu Z, He X, He Y. Facile synthesis of aluminadecorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 2015, 273: 101–110

    Article  CAS  Google Scholar 

  186. 186.

    Kumar A S K, Jiang S J, Tseng W L. Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 7044–7057

    Article  CAS  Google Scholar 

  187. 187.

    Al-Khaldi F A, Abu-Sharkh B, Abulkibash A M, Atieh M A. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study. Desalination and Water Treatment, 2015, 53(5): 1417–1429

    CAS  Google Scholar 

  188. 188.

    Ma X, Yang S T, Tang H, Liu Y, Wang H. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 2015, 448: 347–355

    Article  CAS  PubMed  Google Scholar 

  189. 189.

    Al Khaldi F A, Abusharkh B, Khaled M, Atieh M A, Nasser M, Saleh T A, Agarwal S, Tyagi I, Gupta V K. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbonbased adsorbents. Journal of Molecular Liquids, 2015, 204: 255–263

    Article  CAS  Google Scholar 

  190. 190.

    Yaghmaeian K, Mashizi R K, Nasseri S, Mahvi A H, Alimohammadi M, Nazmara S. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. Journal of Environmental Health Science & Engineering, 2015, 13(1): 55

    Article  CAS  Google Scholar 

  191. 191.

    Zhao X H, Jiao F P, Yu J G, Xi Y, Jiang X Y, Chen X Q. Removal of Cu (II) from aqueous solutions by tartaric acid modified multiwalled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2015, 476: 35–41

    Article  CAS  Google Scholar 

  192. 192.

    Karkeh-abadi F, Saber-Samandari S. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co (II) ions from aqueous solutions. Journal of Hazardous Materials, 2016, 312: 224–233

    Article  CAS  PubMed  Google Scholar 

  193. 193.

    Jiang L, Li S, Yu H, Zou Z, Hou X, Shen F, Li C, Yao X. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Applied Surface Science, 2016, 369: 398–413

    Article  CAS  Google Scholar 

  194. 194.

    Diva T N, Zare K, Taleshi F, Yousefi M. Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. Journal of Nanostructure in Chemistry, 2017, 7(3): 273–281

    Article  CAS  Google Scholar 

  195. 195.

    Farghali A, Tawab H A, Moaty S A, Khaled R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 2017, 7(2): 101–111

    Article  CAS  Google Scholar 

  196. 196.

    Zhang D, Yin Y, Liu J. Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: Adsorption behavior and the impacts of some environmentally relevant factors. Chemical Speciation and Bioavailability, 2017, 29(1): 161–169

    Article  CAS  Google Scholar 

  197. 197.

    Elmi F, Hosseini T, Taleshi M S, Taleshi F. Kinetic and thermodynamic investigation into the lead adsorption process from wastewater through magnetic nanocomposite Fe3O4/CNT. Nanotechnology for Environmental Engineering, 2017, 2(1): 13

    Article  Google Scholar 

  198. 198.

    Abdel Ghani N T, El Chaghaby G A, Helal F S. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of Advanced Research, 2015, 6(3): 405–415

    Article  CAS  PubMed  Google Scholar 

  199. 199.

    Khedr S, Shouman M, Fathy N, Attia A. Effect of physical and chemical activation on the removal of hexavalent chromium ions using palm tree branches. ISRN Environmental Chemistry, 2014, 2014: 1–11

    Article  CAS  Google Scholar 

  200. 200.

    Dawodu F A, Akpomie K G. Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of Materials Research and Technology, 2014, 3(2): 129–141

    Article  CAS  Google Scholar 

  201. 201.

    Mubarak N, Sahu J, Abdullah E, Jayakumar N. Removal of heavy metals from wastewater using carbon nanotubes. Separation and Purification Reviews, 2014, 43(4): 311–338

    Article  CAS  Google Scholar 

  202. 202.

    Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 2007, 58(1): 224–231

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Ramazani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouni, L., Ramazani, A. & Taghavi Fardood, S. An overview of carbon nanotubes role in heavy metals removal from wastewater. Front. Chem. Sci. Eng. 13, 274–295 (2019). https://doi.org/10.1007/s11705-018-1765-0

Download citation

Keywords

  • carbon nanotubes
  • heavy metals removal
  • water treatment