Skip to main content
Log in

Influence of entrainer recycle for batch heteroazeotropic distillation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Dehydration of isopropanol applying batch heteroazeotropic distillation with toluene as entrainer (E) is investigated. The composition of the feed is near to that of the isopropanol (A)-water (B) azeotrope. The effects of recycling the entrainer and the off-cut are studied by dynamic simulation with a professional flow-sheet simulator. Three consecutive batches (one production cycle) is studied. Both operational modes (Mode I: decantation after distillation and Mode II: decantation during distillation) are simulated. For Mode II, calculations are performed both for Strategy A (distillate from the aqueous (E-lean) phase only) and Strategy B (partial withdrawal of the organic (Erich phase), as well). The E-rich phase, the final column hold-up and the off-cut (Mode II only) are recycled to the next batch. The influence of the following parameters are determined: quantity of entrainer, reflux ratios of the steps. The variations caused by the recycling in the 2nd and 3rd batches are also shown. The best results (lowest specific energy demand and highest recovery of A) are obtained by Mode II, Strategy A. Recycling increases the recovery, and drastically diminishes the entrainer consumption. However, it makes the production slower and decreases the quantity of fresh feed that can be processed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mujtaba I M. Batch Distillation: Design and Operation. London: Imperial College Press, 2004, 3, 230–269

    Book  Google Scholar 

  2. Cui X, Feng T, Zhang Y, Yang Z. The energy consumption in a batch stripper and a batch rectifier. Frontiers of Chemical Science and Engineering, 2011, 3(4): 443–452

    Article  CAS  Google Scholar 

  3. Mayur D N, May R A, Jackson R. The time-optimal problem in binary batch distillation with a recycled waste-cut. Chemical Engineering Journal, 1970, 1(1): 15–21

    Article  Google Scholar 

  4. Mujtaba I M. Optimal operation policies in batch distillation. Dissertation for the Doctoral Degree. London: Imperial College, University of London, 1989, 83–136

    Google Scholar 

  5. Mujtaba I M, Macchietto S. An optimal recycle policy for multicomponent batch distillation. Computers & Chemical Engineering, 1992, 16: S273–S280

    Article  CAS  Google Scholar 

  6. Bonny L, Domenech S, Floquet P, Pibouleau L. Optimal strategies for batch distillation campaign of different mixtures. Chemical Engineering and Processing: Process Intensification, 1996, 35(5): 349–361

    Article  CAS  Google Scholar 

  7. Miladi M M, Mujtaba I M. The effect of off-cut recycle on the optimum design and operation of binary batch distillation with fixed product demand. Computers & Chemical Engineering, 2005, 29(7): 1687–1695

    Article  CAS  Google Scholar 

  8. Wajge R M, Reklaitis G V. An optimal campaign structure for multicomponent batch distillation with reversible reaction. Industrial & Engineering Chemistry Research, 1998, 37(5): 1910–1916

    Article  CAS  Google Scholar 

  9. Kao Y L, Ward J D. Design and optimization of batch reactive distillation processes with off-cut. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 411–420

    Article  CAS  Google Scholar 

  10. Kao Y L, Ward J D. Improving batch reactive distillation processes with offcut. Industrial & Engineering Chemistry Research, 2014, 53(20): 8528–8542

    Article  CAS  Google Scholar 

  11. Kao Y L, Ward J D. Batch reactive distillation with off-cut recycling. Industrial & Engineering Chemistry Research, 2015, 54 (7): 2188–2200

    Article  CAS  Google Scholar 

  12. Yatim H, Moszkowicz P, Otterbein M, Lang P. Dynamic simulation of a batch extractive distillation process. Computers & Chemical Engineering, 1993, 17: S57–S62

    Article  CAS  Google Scholar 

  13. Luyben W L, Chien I L. Design and Control of Distillation Systems for Separating Azeotropes. New Jersey: John Wiley & Sons, 2010, 421–422

    Book  Google Scholar 

  14. Seader J D, Henley E J. Separation Process Principles. New York: Wiley, 1998, 604

    Google Scholar 

  15. Rodriguez-Donis I, Gerbaud V, Joulia X. Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 3. Azeotropic mixtures with light entrainer. Industrial & Engineering Chemistry Research, 2012, 51(12): 4643–4660

    CAS  Google Scholar 

  16. Rodriguez-Donis I, Gerbaud V, Joulia X. Thermodynamic insights on the feasibility of homogeneous. Batch extractive distillation. 4. Azeotropic mixtures with intermediate boiling entrainer. Industrial & Engineering Chemistry Research, 2012, 51(18): 6489–6501

    CAS  Google Scholar 

  17. Hegely L, Lang P. Optimization of a batch extractive distillation process with recycling off-cuts. Journal of Cleaner Production, 2016, 136: 99–110

    Article  CAS  Google Scholar 

  18. Hegely L, Lang P. Batch extractive distillation with off-cut and entrainer recycle. In: 4th International Scientific Conference on Advances in Mechanical Engineering (ISCAME), Debrecen, Hungary, 2016, 221–227

    Google Scholar 

  19. Hegely L, Lang P. Batch extractive distillation with recycling of offcut and entrainer. In: 13th French-Quebecois Interuniversity Seminar on Thermal Systems (CIFQ), Saint-Lô, France, 2017, 4–10 (in French)

    Google Scholar 

  20. Young S. The preparation of absolute alcohol from strong spirit. Journal of the Chemical Society, 1902, 81(0): 707–717

    Article  CAS  Google Scholar 

  21. Ooms T, Vreysen S, Van Baelen G, Gerbaud V, Rodriguez-Donis I. Separation of ethyl acetate-isooctane mixture by heteroazeotropic batch distillation. Chemical Engineering Research & Design, 2014, 92(6): 995–1004

    Article  CAS  Google Scholar 

  22. Pham H N, Doherty M F. Design and synthesis of heterogeneous azeotropic distillations. II. Residue curve maps. Chemical Engineering Science, 1990, 45(7): 1837–1844

    Article  CAS  Google Scholar 

  23. Rodriguez-Donis I, Gerbaud V, Joulia X. Heterogeneous entrainer selection for the separation of azeotropic and close boiling temperature mixtures by heterogeneous batch distillation. Industrial & Engineering Chemistry Research, 2001, 40(22): 4935–4950

    Article  CAS  Google Scholar 

  24. Skouras S, Kiva V, Skogestad S. Feasible separations and entrainer selection rules for heteroazeotropic batch distillation. Chemical Engineering Science, 2005, 60(11): 2895–2909

    Article  CAS  Google Scholar 

  25. Skouras S, Skogestad S, Kiva V. Analysis and control of heteroazeotropic batch distillation. AIChE Journal. American Institute of Chemical Engineers, 2005, 51(4): 1144–1157

    Article  CAS  Google Scholar 

  26. Düssel R, Stichlmair J. Separation of azeotropic mixtures by batch distillation using an entrainer. Computers & Chemical Engineering, 1995, 19: 113–118

    Article  Google Scholar 

  27. Koehler J, Haverkamp H, Schadler N. On the batch rectification of azeotropic mixtures with separating agent. Chemieingenieurtechnik (Weinheim), 1995, 67(8): 967–971 (in German)

    CAS  Google Scholar 

  28. Rodriguez-Donis I, Gerbaud V, Joulia X. Feasibility of heterogeneous batch distillation processes. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(6): 1168–1178

    Article  Google Scholar 

  29. Lang P, Modla G. Generalised method for the determination of heterogeneous batch distillation regions. Chemical Engineering Science, 2006, 61(13): 4262–4270

    Article  CAS  Google Scholar 

  30. Hegely L, Gerbaud V, Lang P. Generalised model for heteroazeotropic batch distillation with variable decanter hold-up. Separation and Purification Technology, 2013, 115: 9–19

    Article  CAS  Google Scholar 

  31. Pommier S, Massebeuf S, Kotai B, Lang P, Baudouin O, Gerbaud V. Heterogeneous batch distillation processes: Real system optimisation. Chemical Engineering and Processing: Process Intensification, 2008, 47(3): 408–419

    Article  CAS  Google Scholar 

  32. Rodriguez-Donis I, Hernandez-Gonzalez N, Gerbaud V, Joulia X. Thermodynamic efficiency and cost-effective optimization of heterogeneous batch distillation. Computer-Aided Chemical Engineering, 2012, 30: 362–366

    Article  CAS  Google Scholar 

  33. Modla G, Lang P, Molnar K. Batch heteroazeotropic rectification of a low relative volatility mixture under continuous entrainer feeding: Feasibility studies. In: Proceedings of the 6th World Congress of Chemical Engineering, Melbourne, Australia, 2001, (10 pages on CD)

    Google Scholar 

  34. Rodriguez-Donis I, Equijarosa J A, Gerbaud V, Joulia X. Heterogeneous batch extractive distillation of minimum boiling azeotropic mixtures. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(12): 3074–3083

    Article  Google Scholar 

  35. Hegely L, Gerbaud V, Lang P. General model for studying the feasibility of heterogeneous extractive batch distillation. Industrial & Engineering Chemistry Research, 2014, 53(45): 17782–17793

    Article  CAS  Google Scholar 

  36. Barreto A A, Rodriguez-Donis I, Gerbaud V, Joulia X. Optimization of heterogeneous batch extractive distillation. Industrial & Engineering Chemistry Research, 2011, 50(9): 5204–5217

    Article  CAS  Google Scholar 

  37. Mussati M C, Aguirre P A, Espinosa J, Iribarren O A. Optimal design of azeotropic batch distillation. AIChE Journal, 2006, 52(3): 968–985

    Article  CAS  Google Scholar 

  38. Gmehling J, Möllmann C. Synthesis of distillation processes using thermodynamic models and the Dortmund Data Bank. Industrial & Engineering Chemistry Research, 1998, 37(8): 3112–3123

    Article  CAS  Google Scholar 

  39. Yao J Y, Lin S Y, Chien I L. Operation and control of batch extractive distillation for the separation of mixtures with minimumboiling azeotrope. Journal of the Chinese Institute of Chemical Engineers, 2007, 38(5–6): 371–383

    Article  CAS  Google Scholar 

  40. Gironi F, Lamberti L. Vapour-liquid equilibrium data for the water-2-propanol system in the presence of dissolved salts. Fluid Phase Equilibria, 1995, 105(2): 273–286

    Article  CAS  Google Scholar 

  41. Slusher J T, Cummings P T, Hu Y, Vega C A, O’Connell J P. Vaporliquid equilibrium and density measurements of tetraalkylammonium bromide + propanol + water systems. Journal of Chemical & Engineering Data, 1995, 40(4): 792–798

    Article  CAS  Google Scholar 

  42. Iino M, Nakae A, Sudoh J, Hirose Y. Separation of isopropyl alcohol-water azeotropic mixture by salting out. Kagaku Kogaku, 1971, 35(9): 1017–1021 (in Japanese)

    Article  CAS  Google Scholar 

  43. Van Hoof V, Van den Abeele L, Buekenhoudt A, Dotremont C, Leysen R. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Separation and Purification Technology, 2004, 37(1): 33–49

    Article  CAS  Google Scholar 

  44. Mujiburohman M, Sediawan W B, Sulistyo H. A preliminary study: Distillation of isopropanol-water mixture using fixed adsorptive distillation method. Separation and Purification Technology, 2006, 48(1): 85–92

    Article  CAS  Google Scholar 

  45. Denes F, Lang P, Modla G, Joulia X. New double column system for heteroazeotropic batch distillation. Computers & Chemical Engineering, 2009, 33(10): 1631–1643

    Article  CAS  Google Scholar 

  46. Denes F, Lang P, Joulia X. Generalised closed double-column system for batch heteroazeotropic distillation. Separation and Purification Technology, 2012, 89: 297–308

    Article  CAS  Google Scholar 

  47. Van Baelen G, Vreysen S, Gerbaud V, Rodriguez-Donis I, Geens J, Janssens B. Isopropyl alcohol recovery by heteroazeotropic batch distillation. In: European Meeting on Chemical Industry and Environment (EMChiE), Mechelen, Belgium, 2010, 979–986

    Google Scholar 

  48. Chemstations. CHEMCAD Version 7 User Guide. 2016

  49. Gmehling J, Menke J, Krafczyk J, Fischer K. Azeotropic data. Weinheim: Wiley-VCH, 1994, 620, 624–625, 1310, 1681

    Google Scholar 

  50. Horsley L H, Tamplin W. Azeotropic data-II. Advances in Chemistry Series, 35. Washington: American Chemical Society, 1962, 63

    Google Scholar 

  51. Stankova L, Vesely F, Pick J. Liquid-vapour equilibrium. XLI. The system isopropyl alcohol-water-toluene at 760 torr. Collection of Czechoslovak Chemical Contributions, 1970, 35(1): 1–12

    CAS  Google Scholar 

  52. Washburn E R, Beguin A E. The ternary system: Isopropyl alcohol, toluene and water at 25°C. Journal of the American Chemical Society, 1940, 62(3): 579–581

    Article  CAS  Google Scholar 

  53. Polak J, Lu B C Y. Mutual solubilities of hydrocarbons and water at 0 and 25 °C. Canadian Journal of Chemistry, 1973, 51(24): 4018–4023

    Article  CAS  Google Scholar 

  54. Sørensen J M, Arlt W. Liquid-liquid equilibrium data collection: Ternary and quaternary systems. In: Chemistry Data Series. Frankfurt/Main: DECHEMA, 1980, 619

    Google Scholar 

  55. Kondili E, Pantelides C C, Sargent R W H. A general algorithm for scheduling batch operations. In: 3rd International Symposium on Process System Engineering, 1988, 62–75

    Google Scholar 

  56. Mujtaba I M, Macchietto S. Optimal operation of multicomponent batch distillation multiperiod formulation and solution. Computers & Chemical Engineering, 1993, 17(12): 1191–1207

    Article  CAS  Google Scholar 

  57. Hegely L, Lang P. Entrainer recycle for batch heteroazeotropic distillation. Chemical Engineering Transactions, 2017, 61: 949–954

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hungarian Scientific Research Fund (OTKA) (project No. K-120083) and by the BMEBiotechnology FIKP grant of EMMI (BME FIKP-BIO). The authors thank Mr. Bence Nemeth for his help in the simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Hegely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegely, L., Lang, P. Influence of entrainer recycle for batch heteroazeotropic distillation. Front. Chem. Sci. Eng. 12, 643–659 (2018). https://doi.org/10.1007/s11705-018-1760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1760-5

Keywords

Navigation