Frontiers of Chemical Science and Engineering

, Volume 12, Issue 3, pp 577–591 | Cite as

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

  • Tong Zhang
  • Elie PaillardEmail author
Review Article


Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation—also required for high energy density batteries—by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.


lithium-ion electrolyte solid electrolyte interphase additives high voltage graphite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research presented is part of the ‘SPICY’ project funded by the European Union’s Horizon 2020 research and innovation program under grant No. 653373.


  1. 1.
    U.S. Energy Information Administration. Annual Energy Outlook 2017 with projections to 2050, 2017, 1–64Google Scholar
  2. 2.
    Lewis G N, Keyes F G. The potential of the lithium electrode. Journal of the American Chemical Society, 1913, 35(4): 340–344CrossRefGoogle Scholar
  3. 3.
    Harris W S. Electrochemical studies in cyclic esters. Dissertation for the Doctoral Degree. Berkeley, CA: University of California, 1958CrossRefGoogle Scholar
  4. 4.
    Jasinski R. Bibliography on the uses of propylene carbonate in high energy, density batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 89–91CrossRefGoogle Scholar
  5. 5.
    Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries: Science and technology. Basel: Springer International Publishing, 2016, 1–27CrossRefGoogle Scholar
  6. 6.
    Winn D A, Steele B C H. Thermodynamic characterisation of nonstoichiometric titanium di-sulphide. Materials Research Bulletin, 1976, 11(5): 551–557CrossRefGoogle Scholar
  7. 7.
    Whittingham M S. Preparation of stoichiometric titanium disulfide. US Patent, 4007055, 1975–05–09Google Scholar
  8. 8.
    Murphy D W, Trumbore F A. The chemistry of TiS and NbSe cathodes. Journal of the Electrochemical Society, 1976, 123(7): 960–964CrossRefGoogle Scholar
  9. 9.
    Armand M B. Chapter–Intercalation electrodes. Materials for Advanced Batteries. Boston, MA: Springer, 1980, 145–161CrossRefGoogle Scholar
  10. 10.
    Lazzari M, Scrosati B. A Cyclable Lithium organic electrolyte cell based on two intercalation electrodes. Journal of the Electrochemical Society, 1980, 127(3): 773–774CrossRefGoogle Scholar
  11. 11.
    Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6): 783–789CrossRefGoogle Scholar
  12. 12.
    Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4: 171–174CrossRefGoogle Scholar
  13. 13.
    Nagaura T, Nagamine M, Tanabe I, Miyamoto N. Solid state batteries with sulfide-based solid electrolytes. Progress in batteries and solar cells, 1989, 8: 84–88Google Scholar
  14. 14.
    Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells, 1990, 9: 209–212Google Scholar
  15. 15.
    Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics, 1994, 69(3–4): 212–221CrossRefGoogle Scholar
  16. 16.
    Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of the Electrochemical Society, 1990, 137(7): 2009–2013CrossRefGoogle Scholar
  17. 17.
    Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69(3–4): 293–305CrossRefGoogle Scholar
  18. 18.
    Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051CrossRefGoogle Scholar
  19. 19.
    Peled E, Menkin S. Review—SEI: Past, present and future. Journal of the Electrochemical Society, 2017, 164(7): A1703–A1719CrossRefGoogle Scholar
  20. 20.
    Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Liion battery electrolytes: Flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162 (2): A3084–A3097CrossRefGoogle Scholar
  21. 21.
    Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society, 2013, 160(4): A542–A548CrossRefGoogle Scholar
  22. 22.
    Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281CrossRefGoogle Scholar
  23. 23.
    Bresser D, Paillard E, Passerini S. Chapter 7–Lithium-ion batteries (LIBs) for medium-and large-scale energy storage: Emerging cell materials and components. Advances in Batteries for Medium and Large-Scale Energy Storage. Cambridge: Woodhead Publishing, 2015, 213–289CrossRefGoogle Scholar
  24. 24.
    Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society, 1999, 146(2): 470–472CrossRefGoogle Scholar
  25. 25.
    Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications, 1999, 1(3–4): 148–150CrossRefGoogle Scholar
  26. 26.
    Simon B, Boeuve J P. Rechargeable lithium electrochemical cell. US Patent, 5626981, 1994–04–22Google Scholar
  27. 27.
    Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002, 47(9): 1423–1439CrossRefGoogle Scholar
  28. 28.
    Santner H J, Korepp C, Winter M, Besenhard J O, Möller K C. Insitu FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Analytical and Bioanalytical Chemistry, 2004, 379(2): 266–271CrossRefPubMedGoogle Scholar
  29. 29.
    Aurbach D, Gnanaraj J S, Geissler W, Schmidt M. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 2004, 151(1): A23–A30CrossRefGoogle Scholar
  30. 30.
    McMillan R, Slegr H, Shu Z X, Wang W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999, 81–82: 20–26CrossRefGoogle Scholar
  31. 31.
    Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. Journal of the Electrochemical Society, 2002, 149(12): A1578–A1583CrossRefGoogle Scholar
  32. 32.
    Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004, 104(10): 4303–4417CrossRefPubMedGoogle Scholar
  33. 33.
    Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503–11618CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 1379–1394CrossRefGoogle Scholar
  35. 35.
    Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy & Environmental Science, 2016, 9(6): 1955–1988CrossRefGoogle Scholar
  36. 36.
    Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of the Electrochemical Society, 2005, 152(10): A2046–A2050CrossRefGoogle Scholar
  37. 37.
    Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(41): 12954–12961CrossRefGoogle Scholar
  38. 38.
    Wang D Y, Sinha N N, Burns J C, Aiken C P, Petibon R, Dahn J R. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. Journal of the Electrochemical Society, 2014, 161(4): A467–A472CrossRefGoogle Scholar
  39. 39.
    Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 1997, 144(1): 205–213CrossRefGoogle Scholar
  40. 40.
    Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000, 3(4): 178–179CrossRefGoogle Scholar
  41. 41.
    Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of the Electrochemical Society, 2006, 153(7): A1345–A1352CrossRefGoogle Scholar
  42. 42.
    Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005, 142(1–2): 389–390CrossRefGoogle Scholar
  43. 43.
    Yang L, Ravdel B, Lucht B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97CrossRefGoogle Scholar
  44. 44.
    Hu L, Zhang Z, Amine K. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry Communications, 2013, 35: 76–79CrossRefGoogle Scholar
  45. 45.
    Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrodeelectrolyte solution interactions, related to cathode materials for Liion batteries. Journal of Power Sources, 2007, 165(2): 491–499CrossRefGoogle Scholar
  46. 46.
    Xia J, Petibon R, Xiong D, Ma L, Dahn J R. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328: 124–135CrossRefGoogle Scholar
  47. 47.
    Borodin O, Behl W, Jow T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. Journal of Physical Chemistry C, 2013, 117(17): 8661–8682CrossRefGoogle Scholar
  48. 48.
    Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB). Journal of the Electrochemical Society, 2013, 160(11): A2005–A2013CrossRefGoogle Scholar
  49. 49.
    Xia J, Ma L, Nelson K J, Nie M, Lu Z, Dahn J R. A study of Li-ion cells operated to 4.5 V and at 55 °C. Journal of the Electrochemical Society, 2016, 163(10): A2399–A2406CrossRefGoogle Scholar
  50. 50.
    Cao X, He X, Wang J, Liu H, Röser S, Rad B R, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Applied Materials & Interfaces, 2016, 8(39): 25971–25978CrossRefGoogle Scholar
  51. 51.
    Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. Journal of the Electrochemical Society, 2009, 156(1): A60–A65CrossRefGoogle Scholar
  52. 52.
    Xue L, Ueno K, Lee S Y, Angell C A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262: 123–128CrossRefGoogle Scholar
  53. 53.
    Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009, 11(5): 1073–1076CrossRefGoogle Scholar
  54. 54.
    Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013, 6(6): 1806–1810CrossRefGoogle Scholar
  55. 55.
    Zhang X, Pugh J K, Ross P N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of the Electrochemical Society, 2001, 148(5): E183–E188CrossRefGoogle Scholar
  56. 56.
    Assary R S, Curtiss L A, Redfern P C, Zhang Z, Amine K. Computational studies of polysiloxanes: Oxidation potentials and decomposition reactions. Journal of Physical Chemistry C, 2011, 115(24): 12216–12223CrossRefGoogle Scholar
  57. 57.
    Xu K, Ding S P, Jow T R. Toward reliable values of electrochemical stability limits for electrolytes. Journal of the Electrochemical Society, 1999, 146(11): 4172–4178CrossRefGoogle Scholar
  58. 58.
    Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109(2): 458–464CrossRefGoogle Scholar
  59. 59.
    Zhang X, Devine T M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. Journal of the Electrochemical Society, 2006, 153(9): B344–B351CrossRefGoogle Scholar
  60. 60.
    Xu K, Zhang S, Jow T R. Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6(6): A117–A120CrossRefGoogle Scholar
  61. 61.
    Zhuang G V, Xu K, Jow T R, Ross P N Jr. Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochemical and Solid-State Letters, 2004, 7(8): A224–A227CrossRefGoogle Scholar
  62. 62.
    Ma L, Glazier S L, Petibon R, Xia J, Peters J M, Liu Q, Allen J, Doig R N C, Dahn J R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. Journal of the Electrochemical Society, 2017, 164(1): A5008–A5018CrossRefGoogle Scholar
  63. 63.
    Xia J, Nie M, Burns J C, Xiao A, Lamanna W M, Dahn J R. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307: 340–350CrossRefGoogle Scholar
  64. 64.
    Xia J, Glazier S L, Petibon R, Dahn J R. Improving linear alkyl carbonate electrolytes with electrolyte additives. Journal of the Electrochemical Society, 2017, 164(6): A1239–A1250CrossRefGoogle Scholar
  65. 65.
    Xia J, Liu Q, Hebert A, Hynes T, Petibon R, Dahn J R. Succinic anhydride as an enabler in ethylene carbonate-free linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(6): A1268–A1273CrossRefGoogle Scholar
  66. 66.
    Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A. Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochimica Acta, 2011, 56(17): 5972–5978CrossRefGoogle Scholar
  67. 67.
    Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. Graphite/LiFePO4 lithium-ion battery working at the heat engine coolant temperature. Journal of Power Sources, 2014, 266: 132–137CrossRefGoogle Scholar
  68. 68.
    Xia J, Self J, Ma L, Dahn J R. Sulfolane-based electrolyte for high voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/graphite pouch cells. Journal of the Electrochemical Society, 2015, 162(8): A1424–A1431CrossRefGoogle Scholar
  69. 69.
    Hilbig P, Ibing L, Wagner R, Winter M, Cekic-Laskovic I. Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies, 2017, 10(9): 1312CrossRefGoogle Scholar
  70. 70.
    Hu L, Xue Z, Amine K, Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry: synthesis and evaluation of an additive for highvoltage LiNi0.5Mn1.5O4/graphite cell. Journal of the Electrochemical Society, 2014, 161(12): A1777–A1781CrossRefGoogle Scholar
  71. 71.
    Im J, Lee J, Ryou MH, Lee Y M, Cho K Y. Fluorinated carbonatebased electrolyte for high-voltage Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion battery. Journal of the Electrochemical Society, 2017, 164(1): A6381–A6385CrossRefGoogle Scholar
  72. 72.
    Kita F, Sakata H, Sinomoto S, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Nie J, Pavlenko N V, Yagupolskii Y L. Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000, 90(1): 27–32CrossRefGoogle Scholar
  73. 73.
    Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez J Y, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. Chem-SusChem, 2014, 7(10): 2939–2946Google Scholar
  74. 74.
    Xiong D J, Bauer M, Ellis L D, Hynes T, Hyatt S, Hall D S, Dahn J R. Some physical properties of ethylene carbonate-free electrolytes. Journal of the Electrochemical Society, 2018, 165(2): A126–A131CrossRefGoogle Scholar
  75. 75.
    Sun X, Angell C A. Doped sulfone electrolytes for high voltage Liion cell applications. Electrochemistry Communications, 2009, 11 (7): 1418–1421CrossRefGoogle Scholar
  76. 76.
    Xu K, Angell C A. Sulfone-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 2002, 149(7): A920–A926CrossRefGoogle Scholar
  77. 77.
    Lee S Y, Ueno K, Angell C A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A walden plot analysis of the maximally conductive compositions. Journal of Physical Chemistry C, 2012, 116(45): 23915–23920CrossRefGoogle Scholar
  78. 78.
    Xu K, Angell C A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. Journal of the Electrochemical Society, 1998, 145(4): L70–L72CrossRefGoogle Scholar
  79. 79.
    Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4 (22): 3992–3999CrossRefGoogle Scholar
  80. 80.
    Brenner A. Note on an organic-electrolyte cell with a high voltage. Journal of the Electrochemical Society, 1971, 118(3): 461–462CrossRefGoogle Scholar
  81. 81.
    Zhang T, de Meatza I, Qi X, Paillard E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources, 2017, 356: 97–102CrossRefGoogle Scholar
  82. 82.
    Hochgatterer N S, SchweigerMR, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008, 11(5): A76–A80CrossRefGoogle Scholar
  83. 83.
    Nguyen C C, Yoon T, Seo D M, Guduru P, Lucht B L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Applied Materials & Interfaces, 2016, 8(19): 12211–12220CrossRefGoogle Scholar
  84. 84.
    Kim N. Electrolyte for lithium ion battery to control swelling. US Patent, 20050233207A1, 2004–04–16Google Scholar
  85. 85.
    Hamamoto T, Abe K, Tsutomu T. Non-aqueous electrolyte and lithium secondary battery using the same. US Patent, 20070207389A1, 2007–09–06Google Scholar
  86. 86.
    Ma T, Xu G L, Li Y, Wang L, He X, Zheng J, Liu J, Engelhard M H, Zapol P, Curtiss L A, Jorne J, Amine K, Chen Z. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. Journal of Physical Chemistry Letters, 2017, 8(5): 1072–1077CrossRefPubMedGoogle Scholar
  87. 87.
    Wu F, Xiang J, Li L, Chen J, Tan G, Chen R. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202: 322–331CrossRefGoogle Scholar
  88. 88.
    Fujii K, Seki S, Fukuda S, Kanzaki R, Takamuku T, Umebayashi Y, Ishiguro S. Anion conformation of low-viscosity roomtemperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. Journal of Physical Chemistry B, 2007, 111(44): 12829–12833CrossRefGoogle Scholar
  89. 89.
    Paillard E, Zhou Q, Henderson W A, Appetecchi G B, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156(11): A891–A895CrossRefGoogle Scholar
  90. 90.
    Gebresilassie G, Grugeon S, Gachot G, Armand M, Laruelle S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEIreinforcing additives. Electrochimica Acta, 2013, 102: 133–141Google Scholar
  91. 91.
    Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Liion batteries. Electrochimica Acta, 2015, 2015(154): 287–293CrossRefGoogle Scholar
  92. 92.
    Zhang T, Kaymaksiz S, de Meatza I, Paillard E. Practical sulfolane-based electrolytes: Choice of Li salt for graphite anode operation. Honolulu: ECS Meeting Abstracts, 2016, MA2016–02537Google Scholar
  93. 93.
    Li L, Zhou S, Han H, Li H, Nie J, Armand M, Zhou Z, Huang X. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. Journal of the Electrochemical Society, 2011, 158(2): A74–A82CrossRefGoogle Scholar
  94. 94.
    Abouimrane A, Ding J, Davidson I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 2009, 189(1): 693–696CrossRefGoogle Scholar
  95. 95.
    Myung S T, Hitoshi Y, Sun Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(27): 9891–9911CrossRefGoogle Scholar
  96. 96.
    Dalavi S, Xu M, Knight B, Lucht B L. Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2012, 15(2): A28–A31CrossRefGoogle Scholar
  97. 97.
    Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8(9): 1423–1428CrossRefGoogle Scholar
  98. 98.
    Nie M, Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and dtructure in lithium ion batteries. Journal of the Electrochemical Society, 2014, 161(6): A1001–A1006CrossRefGoogle Scholar
  99. 99.
    Knight B M. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries. Dissertation for the Doctoral Degree. Kinston, RI: Univeristy of Rhode Island, 2014Google Scholar
  100. 100.
    Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro(oxalato)borate as additive to improve the thermal stability of lithiated graphite. Electrochemical and Solid-State Letters, 2009, 12(4): A69–A72CrossRefGoogle Scholar
  101. 101.
    Lazar M L, Lucht B L. Carbonate free electrolyte for lithium ion batteries containing butyrolactone and methyl butyrate. Journal of the Electrochemical Society, 2015, 162(6): A928–A934CrossRefGoogle Scholar
  102. 102.
    Ehteshami N, Paillard E. Ethylene carbonate-free, adiponitrilebased electrolytes compatible with graphite anodes. ECS Transactions, 2015, 77(1): 11–20CrossRefGoogle Scholar
  103. 103.
    Seki S, Takei K, Miyashiro H, Watanabe M. Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. Journal of the Electrochemical Society, 2011, 158(6): A769–A774CrossRefGoogle Scholar
  104. 104.
    Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme-Li salt solvate ionic liquids. Journal of Physical Chemistry C, 2014, 118(35): 20246–20256CrossRefGoogle Scholar
  105. 105.
    Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 2014, 136(13): 5039–5046CrossRefPubMedGoogle Scholar
  106. 106.
    Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Applied Materials & Interfaces, 2014, 6(14): 10892–10899CrossRefGoogle Scholar
  107. 107.
    Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Electrochemistry Communications, 2013, 49(95): 11194–11196Google Scholar
  108. 108.
    Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7: 12032CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423CrossRefGoogle Scholar
  110. 110.
    Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry, 2017, 85 (9): 559–565CrossRefGoogle Scholar
  111. 111.
    Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advancement of Science, 2017, 4(8): 1700032Google Scholar
  112. 112.
    Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J, Xiao J. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Letters, 2017, 17(3): 1602–1609CrossRefPubMedGoogle Scholar
  113. 113.
    Von Wald Cresce A, Borodin O, Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. Journal of Physical Chemistry C, 2012, 116(50): 26111–26117CrossRefGoogle Scholar
  114. 114.
    Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion. Journal of Physical Chemistry C, 2010, 114(26): 11680–11685CrossRefGoogle Scholar
  115. 115.
    McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426CrossRefGoogle Scholar
  116. 116.
    Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. Journal of Physical Chemistry C, 2015, 119(8): 3957–3970CrossRefGoogle Scholar
  117. 117.
    Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45(1–2): 67–86CrossRefGoogle Scholar
  118. 118.
    Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. Journal of Physical Chemistry C, 2013, 117(48): 25381–25389CrossRefGoogle Scholar
  119. 119.
    Pan Y, Wang G, Lucht B L. Cycling performance and surface analysis of lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217: 269–273CrossRefGoogle Scholar
  120. 120.
    Watanabe M, ThomasML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 2017, 117(10): 7190–7239CrossRefPubMedGoogle Scholar
  121. 121.
    Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources, 2009, 194(2): 601–609CrossRefGoogle Scholar
  122. 122.
    Zhao Y, Bostrom T. Application of ionic liquids in solar cells and batteries: A review. Current Organic Chemistry, 2015, 19(6): 556–566CrossRefGoogle Scholar
  123. 123.
    Howlett P C, MacFarlane D R, Hollenkamp A F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004, 7(5): A97–A101CrossRefGoogle Scholar
  124. 124.
    Grande L, von Zamory J, Koch S L, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidiniumbased ionic liquid electrolytes. ACS Applied Materials & Interfaces, 2015, 7(10): 5950–5958CrossRefGoogle Scholar
  125. 125.
    Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, (18): 2098–2099CrossRefGoogle Scholar
  126. 126.
    Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources, 2006, 162(1): 658–662CrossRefGoogle Scholar
  127. 127.
    Yamagata M, Tanaka K, Tsuruda Y, Fukuda S, Nakasuka S, Kono M, Ishikawa M. The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space. Electrochemistry, 2015, 83(10): 918–924CrossRefGoogle Scholar
  128. 128.
    Reiter J, Paillard E, Grande L, Winter M, Passerini S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochimica Acta, 2013, 91: 101–107CrossRefGoogle Scholar
  129. 129.
    Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279: 766–773CrossRefGoogle Scholar
  130. 130.
    Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S. Ionic liquid electrolytes for safer lithium batteries. Journal of the Electrochemical Society, 2017, 164(1): A6026–A6031CrossRefGoogle Scholar
  131. 131.
    Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9(12): 2801–2806CrossRefGoogle Scholar
  132. 132.
    Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236: 87–94CrossRefGoogle Scholar
  133. 133.
    Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium-and sodium-ion anodes. Electrochimica Acta, 2014, 128 (10): 163–171CrossRefGoogle Scholar
  134. 134.
    Sen U K, Mitra S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Applied Materials & Interfaces, 2013, 5(4): 1240–1247CrossRefGoogle Scholar
  135. 135.
    Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Advanced Energy Materials, 2013, 3(4): 513–523CrossRefGoogle Scholar
  136. 136.
    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, 334 (6052): 75–79CrossRefPubMedGoogle Scholar
  137. 137.
    Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Sigraphite composite negative electrodes in Li-ion batteries. Journal of Physical Chemistry C, 2012, 116(1): 1380–1389CrossRefGoogle Scholar
  138. 138.
    Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50(9): 3247–3266CrossRefGoogle Scholar
  139. 139.
    Sharova V, Moretti A, Giffin G, Carvalho D, Passerini S. Evaluation of carbon-coated graphite as a negative electrode material for Li-ion batteries. C Journal of Carbon Research, 2017, 3(3): 22CrossRefGoogle Scholar
  140. 140.
    Menkin S, Golodnitsky D, Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithiumion cells for EV applications. Electrochemistry Communications, 2009, 11(9): 1789–1791CrossRefGoogle Scholar
  141. 141.
    Li F S, Wu Y S, Chou J, Winter M, Wu N L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Advanced Materials, 2015, 27(1): 130–137CrossRefPubMedGoogle Scholar
  142. 142.
    Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. Journal of Power Sources, 2012, 198(15): 243–250Google Scholar
  143. 143.
    Verma P, Novák P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50(7): 2599–2614CrossRefGoogle Scholar
  144. 144.
    Ma L, Kim M S, Archer L A. Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29 (10): 4181–4189CrossRefGoogle Scholar
  145. 145.
    Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(7): 3483–3492CrossRefGoogle Scholar
  146. 146.
    Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9): 1853–1858CrossRefPubMedGoogle Scholar
  147. 147.
    Kang I S, Lee Y S, Kim DW. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. Journal of the Electrochemical Society, 2014, 161(1): A53–A57CrossRefGoogle Scholar
  148. 148.
    Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding M S, Borodin O, Vatamanu J, Schroeder M A, Eidson N, Wang C, Xu K. 4.0 V aqueous Li-ion batteries. Joule, 2017, 1(1): 122–132CrossRefGoogle Scholar
  149. 149.
    Guk H, Kim D, Choi S H, Chung D H, Han S S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. Journal of the Electrochemical Society, 2016, 163(6): A917–A922CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz Institute Muenster — Forschungszentrum Juelich (IEK 12)MuensterGermany

Personalised recommendations