Skip to main content
Log in

Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Water pollution has become an urgent issue for our modern society, and it is highly desirable to rapidly deal with the water pollution without secondary pollution. In this paper, we have prepared a reduced graphene oxide (RGO) wrapped sponge with superhydrophobicity and mechanically flexibility via a facile low-temperature thermal treatment method under a reducing atmosphere. The skeleton of this sponge is completely covered with RGO layers which are closely linked to the skeleton. This sponge has an abundant pore structure, high selectivity, good recyclability, low cost, and outstanding adsorption capacity for floating oil or heavy oil underwater. In addition, this sponge can maintain excellent adsorption performance for various oils and organic solvents over 50 cycles by squeezing, and exhibits extremely high separation efficiencies, up to 6 × 106 and 3.6 × 106 L·m–3·h–1 in non-turbulent and turbulent water/oil systems, respectively. This superhydrophobic adsorbent with attractive properties may find various applications, especially in large-scale removal of organic contaminants and oil spill cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrope M. Oil spill: Deep wounds. Nature, 2011, 472(7342): 152–154

    Article  CAS  PubMed  Google Scholar 

  2. Joye S B. Marine Science. Deepwater Horizon, 5 years on. Science, 2015, 349(6248): 592–593

    CAS  PubMed  Google Scholar 

  3. Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C. Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts, 2015, 17(7): 1201–1219

    CAS  Google Scholar 

  4. Gupta S, Tai N H. Carbon materials as oil sorbents: A review on the synthesis and performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(5): 1550–1565

    Article  CAS  Google Scholar 

  5. Sun Y R, Yang M X, Yu F, Chen J H, Ma J. Synthesis of graphene aerogel adsorbents and their applications in water treatment. Progress in Chemistry, 2015, 27(8): 1133–1146

    Google Scholar 

  6. Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Advanced Materials, 2013, 25(18): 2554–2560

    Article  CAS  PubMed  Google Scholar 

  7. Hu H, Zhao Z B, Wan W B, Gogotsi Y, Qiu J S. Ultralight and highly compressible graphene aerogels. Advanced Materials, 2013, 25(15): 2219–2223

    Article  CAS  PubMed  Google Scholar 

  8. Wan W C, Lin Y H, Prakash A, Zhou Y. Three-dimensional carbonbased architectures for oil remediation: From synthesis and modification to functionalization. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(48): 18687–18705

    Article  CAS  Google Scholar 

  9. Xu L M, Xiao G Y, Chen C B, Li R, Mai Y Y, Sun G M, Yan D Y. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(14): 7498–7504

    Article  CAS  Google Scholar 

  10. Li J, Kang R M, Tang X H, She H D, Yang Y X, Zha F. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale, 2016, 8(14): 7638–7645

    Article  CAS  PubMed  Google Scholar 

  11. Xiao J L, Zhang J F, Lv W Y, Song Y H, Zheng Q. Multifunctional graphene/poly (vinyl alcohol) aerogels: In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils. Carbon, 2017, 123: 354–363

    Article  CAS  Google Scholar 

  12. Wu C, Huang X Y, Wu X F, Qian R, Jiang P K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Advanced Materials, 2013, 25(39): 5658–5662

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y X, Sheng K X, Li C, Shi G Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4 (7): 4324–4330

    Google Scholar 

  14. Kuang J, Dai Z H, Liu L Q, Yang Z, Jin M, Zhang Z. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7(20): 9252–9260

    Article  CAS  PubMed  Google Scholar 

  15. He Y L, Li J H, Luo K, Li L F, Chen J B, Li J Y. Engineering reduced graphene oxide aerogel produced by effective g-ray radiation-induced self-assembly and its application for continuous oil-water separation. Industrial & Engineering Chemistry Research, 2016, 55(13): 3775–3781

    Article  CAS  Google Scholar 

  16. Dong X C, Chen J, Ma Y W, Wang J, Chan-Park M B, Liu X M, Wang L H, Huang W, Chen P. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chemical Communications, 2012, 48(86): 10660–10662

    Article  CAS  PubMed  Google Scholar 

  17. Li R, Chen C B, Li J, Xu L M, Xiao G Y, Yan D Y. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(9): 3057–3064

    Article  CAS  Google Scholar 

  18. Cong H P, Ren X C, Wang P, Yu S H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced selfassembly process. ACS Nano, 2012, 6(3): 2693–2703

    Article  CAS  PubMed  Google Scholar 

  19. Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, Ruoff R S, Sun L T. Highly enhanced performance of spongy graphene as an oil sorbent. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(6): 1652–1656

    Article  CAS  Google Scholar 

  20. Pham V H, Dickerson J H. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Applied Materials & Interfaces, 2014, 6(16): 14181–14188

    Article  CAS  Google Scholar 

  21. Ji C H, Zhang K, Li L, Chen X X, Hu J L, Yan D Y, Xiao G Y, He X H. High performance graphene-based foam fabricated by a facile approach for oil absorption. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(22): 11263–11270

    Article  CAS  Google Scholar 

  22. Wan W C, Zhang R Y, Li W, Liu H, Lin Y H, Li L N, Zhou Y. Graphene-carbon nanotube aerogel as an ultralight, compressible and recyclable highly efficient absorbent for oil and dyes. Environmental Science: Nano, 2016, 3(1): 107–113

    CAS  Google Scholar 

  23. Wan W C, Zhang F, Yu S, Zhang R Y, Zhou Y. Hydrothermal formation of graphene aerogel for oil sorption: The role of reducing agent, reaction time and temperature. New Journal of Chemistry, 2016, 40(4): 3040–3046

    Article  CAS  Google Scholar 

  24. Paredes J I, Villar-Rodil S, Martínez-Alonso A, Tascón J M D. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24 (19): 10560–10564

    Google Scholar 

  25. Bosch-Navarro C, Coronado E, Martí-Gastaldo C, Sánchez-Royo J F, Gómez M G. Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale, 2012, 4 (13): 3977–3982

    Google Scholar 

  26. Stolz A, Floch S L, Reinert L, Ramos S M M, Tuaillon-Combes J, Soneda Y, Chaudet P, Baillis D, Blanchard N, Duclaux L, et al.. Melamine-derived carbon sponges for oil-water separation. Carbon, 2016, 107: 198–208

    Article  CAS  Google Scholar 

  27. Hang Z S, Tan L H, Ju F Y, Zhou B, Ying S J. Non-isothermal kinetic studies on the thermal decomposition of melamine by thermogravimetric analysis. Journal of Analytical Science, 2011, 27 (3): 279–283

    Google Scholar 

  28. Cheng Y, Dong Y Y, Wu J H, Yang X R, Bai H, Zheng H Y, Ren D M, Zou Y D, Li M. Screening melamine adulterant in milk powder with laser Raman spectrometry. Journal of Food Composition and Analysis, 2010, 23(2): 199–202

    Article  CAS  Google Scholar 

  29. Yang D X, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A Jr, Ruoff R S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 2009, 47(1): 145–152

    Article  CAS  Google Scholar 

  30. Ge J, Shi L A, Wang Y C, Zhao H Y, Yao H B, Zhu Y B, Zhang Y, Zhu H W, Wu H A, Yu S H. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017, 12(5): 434–440

    Article  CAS  PubMed  Google Scholar 

  31. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565

    Article  CAS  Google Scholar 

  32. Wang Z T, Xiao C F, Zhao J, Hu X, Xu N K. Preparation of reduced graphene oxide-based melamine sponge and its absorption properties. Chemical Journal of Chinese Universities, 2014, 35: 2410–2417

    CAS  Google Scholar 

  33. Periasamy A P, Wu WP, Ravindranath R, Roy P, Lin G L, Chang H T. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Marine Pollution Bulletin, 2017, 114(2): 888–895

    Article  CAS  PubMed  Google Scholar 

  34. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. Journal of Physical Chemistry C, 2011, 115(34): 17009–17019

    Article  CAS  Google Scholar 

  35. Lei Z W, Zhang G Z, Deng Y H, Wang C Y. Thermoresponsive melamine sponges with switchable wettability by interface-initiated atom transfer radical polymerization for oil/water separation. ACS Applied Materials & Interfaces, 2017, 9(10): 8967–8974

    Article  CAS  Google Scholar 

  36. Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 2011, 5(6): 4350–4358

    Article  CAS  PubMed  Google Scholar 

  37. Ding Q, Song X Y, Yao X J, Qi X S, Au C T, Zhong W, Du Y W. Large-scale and controllable synthesis of metal-free nitrogen-doped carbon nanofibers and nanocoils over water-soluble Na2CO3. Nanoscale Research Letters, 2013, 8(1): 545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuang J, Liu L Q, Gao Y, Zhou D, Chen Z, Han B H, Zhang Z. A hierarchically structured graphene foam and its potential as a largescale strain-gauge sensor. Nanoscale, 2013, 5(24): 12171–12177

    Article  CAS  PubMed  Google Scholar 

  39. Yao H B, Huang G, Cui C H, Wang X H, Yu S H. Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges. Advanced Materials, 2011, 23(32): 3643–3647

    Article  CAS  PubMed  Google Scholar 

  40. Yu C L, Yu C M, Cui L Y, Song Z Y, Zhao X Y, Ma Y, Jiang L. Facile preparation of the porous PDMS oil-absorbent for oil/water separation. Advanced Materials Interfaces, 2017, 4(3): 1600862

    Article  CAS  Google Scholar 

  41. Qiu L J, Wan W C, Tong Z Q, Zhang R Y, Li L N, Zhou Y. Controllable and green synthesis of robust graphene aerogels with tunable surface properties for oil and dye adsorption. New Journal of Chemistry, 2018, 42(2): 1003–1009

    Article  CAS  Google Scholar 

  42. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1–8

    Article  CAS  Google Scholar 

  43. Hu H, Zhao Z B, Wan W B, Gogotsi Y, Qiu J S. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6 (5): 3242–3249

    Article  CAS  Google Scholar 

  44. Si Y, Fu Q X, Wang X Q, Zhu J, Yu J Y, Sun G, Ding B. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano, 2015, 9(4): 3791–3799

    Article  CAS  PubMed  Google Scholar 

  45. Kabiri S, Tran D N H, Altalhi T, Losic D. Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon, 2014, 80: 523–533

    Article  CAS  Google Scholar 

  46. Tran D N H, Kabiri S, Sim T R, Losic D. Selective adsorption of oilwater mixtures using polydimethylsiloxane (PDMS)-graphene sponges. Environmental Science: Water Research & Technology, 2015, 1(3): 298–305

    CAS  Google Scholar 

  47. Cao N, Yang B, Barras A, Szunerits S, Boukherroub R. Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chemical Engineering Journal, 2017, 307: 319–325

    Article  CAS  Google Scholar 

  48. Song S, Yang H, Su C P, Jiang Z B, Lu Z. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chemical Engineering Journal, 2016, 306: 504–511

    Article  CAS  Google Scholar 

  49. Luo Y Z, Jiang S L, Xiao Q, Chen C L, Li B Y. Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation. Scientific Reports, 2017, 7(1): 7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Sichuan Provincial International Cooperation Project (2017HH0030), the Scientific Research Starting project of SWPU (2014QHZ021), the Training funds for academic and technological leaders in Sichuan and the Innovative Research Team of Sichuan Province (2016TD0011) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Electronic supplementary material

Supplementary material, approximately 362 KB.

Supplementary material, approximately 720 KB.

Supplementary material, approximately 2.32 MB.

Supplementary material, approximately 2.86 MB.

Supplementary material, approximately 4.46 MB.

11705_2018_1751_MOESM6_ESM.pdf

Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Zhang, R., Zhang, Y. et al. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation. Front. Chem. Sci. Eng. 12, 390–399 (2018). https://doi.org/10.1007/s11705-018-1751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1751-6

Keywords

Navigation