Skip to main content
Log in

Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Plants have been used for medicinal purposes for thousands of years but they are still finding new uses in modern times. For example, Elaeagnus angustifolia (EA) is a medicinal herb with antinociceptive, anti-inflammatory, antibacterial and antioxidant properties and it is widely used in the treatment of rheumatoid arthritis and osteoarthritis. EA extract was loaded onto poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL/EA) nanofibers and their potential applications for bone tissue engineering were studied. The morphology and chemical properties of the fibers were evaluated using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, contact angle measurements and mechanical tests. All the samples had bead-free morphologies with average diameters ranging from 100 to 200 nm. The response of human cells to the PCL-PEG-PCL/EA nanofibers was evaluated using human dental pulp stem cells (hDPSCs). The hDPSCs had better adhesion and proliferation capacity on the EA loaded nanofibers than on the pristine PCL-PEG-PCL nanofibers. An alizarin red S assay and the alkaline phosphatase activity confirmed that the nanofibrous scaffolds induced osteoblastic performance in the hDPSCs. The quantitative real time polymerase chain reaction results confirmed that the EA loaded nanofibrous scaffolds had significantly upregulated gene expression correlating to osteogenic differentiation. These results suggest that PCL-PEG-PCL/EA nanofibers might have potential applications for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711

    Article  CAS  PubMed  Google Scholar 

  2. Chapekar M S. Tissue engineering: Challenges and opportunities. Journal of Biomedical Materials Research: Part A, 2000, 53(6): 617–620

    Article  CAS  Google Scholar 

  3. Shadjou N, Hasanzadeh M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. Journal of Biomedical Materials Research: Part A, 2016, 104(5): 1250–1275

    Article  CAS  Google Scholar 

  4. Diba M, Kharaziha M, Fathi M, Gholipourmalekabadi M, Samadikuchaksaraei A. Preparation and characterization of polycaprolactone/ forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology, 2012, 72(6): 716–723

    Article  CAS  Google Scholar 

  5. Yu Y, Sun B, Yi C, Mo X. Stem cell homing-based tissue engineering using bioactive materials. Frontiers of Materials Science, 2017, 11(2): 93–105

    Article  Google Scholar 

  6. Verma K, Bains R, Bains V K, Rawtiya M, Loomba K, Srivastava S C. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview. Dental Research Journal, 2014, 11(3): 302–308

    PubMed  PubMed Central  Google Scholar 

  7. Potdar P D, Jethmalani Y D. Human dental pulp stem cells: Applications in future regenerative medicine. World Journal of Stem Cells, 2015, 7(5): 839–851

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jo Y Y, Lee H J, Kook S Y, Choung H W, Park J Y, Chung J H, Choung Y H, Kim E S, Yang H C, Choung P H. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Engineering, 2007, 13(4): 767–773

    Article  CAS  PubMed  Google Scholar 

  9. Gronthos S, Brahim J, Li W, Fisher L W, Cherman N, Boyde A, DenBesten P, Robey P G, Shi S. Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 2002, 81(8): 531–535

    Article  CAS  PubMed  Google Scholar 

  10. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 2011, 9(1): 12–25

    Article  CAS  PubMed  Google Scholar 

  11. Khanna-Jain R, Mannerström B, Vuorinen A, Sándor G K, Suuronen R, Miettinen S. Osteogenic differentiation of human dental pulp stem cells on ß-tricalcium phosphate/poly (L-lactic acid/caprolactone) three-dimensional scaffolds. Journal of Tissue Engineering, 2012, 3(1): 2041731412467998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Paduano F, Marrelli M, White L J, Shakesheff K M, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One, 2016, 11(2): e0148225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Miura M, Gronthos S, Zhao M, Lu B, Fisher L W, Robey P G, Shi S. SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karbanová J, Soukup T, Suchánek J, Mokrý J. Osteogenic differentiation of human dental pulp-derived stem cells under various ex-vivo culture conditions. Acta Medica, 2010, 53(2): 79–84

    PubMed  Google Scholar 

  15. Asghari F, Salehi R, Agazadeh M, Alizadeh E, Adibkia K, Samiei M, Akbarzadeh A, Aval N A, Davaran S. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatitecoated biodegradable nanofibrous scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65(14): 720–728

    Article  CAS  Google Scholar 

  16. Fu S, Ni P, Wang B, Chu B, Peng J, Zheng L, Zhao X, Luo F, Wei Y, Qian Z. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Biomaterials, 2012, 33 (33): 8363–8371

    Article  CAS  PubMed  Google Scholar 

  17. Li WJ, Laurencin C T, Caterson E J, Tuan R S, Ko F K. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research: Part A, 2002, 60(4): 613–621

    Article  CAS  Google Scholar 

  18. Li C, Vepari C, Jin H J, Kim H J, Kaplan D L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27(16): 3115–3124

    Article  CAS  PubMed  Google Scholar 

  19. Zhang R, Ma P X. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Journal of Biomedical Materials Research, 1999, 44(4): 446–455

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y B, Kim G H. PCL/alginate composite scaffolds for hard tissue engineering: Fabrication, characterization, and cellular activities. ACS Combinatorial Science, 2015, 17(2): 87–99

    Article  PubMed  CAS  Google Scholar 

  21. Maitlo I, Ali S, AkramMY, Shehzad F K, Nie J. Binary phase solidstate photopolymerization of acrylates: Design, characterization and biomineralization of 3D scaffolds for tissue engineering. Frontiers of Materials Science, 2017, 11(4): 307–317

    Article  Google Scholar 

  22. Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7(3): 216–223

    Article  CAS  Google Scholar 

  23. Zong X, Bien H, Chung C Y, Yin L, Fang D, Hsiao B S, Chu B, Entcheva E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 2005, 26(26): 5330–5338

    Article  CAS  PubMed  Google Scholar 

  24. Sill T J, von Recum H A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006

    Article  CAS  PubMed  Google Scholar 

  25. Ogata N, Yamaguchi S, Shimada N, Lu G, Iwata T, Nakane K, Ogihara T. Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. Journal of Applied Polymer Science, 2007, 104(3): 1640–1645

    Article  CAS  Google Scholar 

  26. Foroughi M R, Karbasi S, Khoroushi M, Khademi A A. Polyhydroxybutyrate/chitosan/bioglass nanocomposite as a novel electrospun scaffold: Fabrication and characterization. Journal of Porous Materials, 2017, 24(6): 1447–1460

    Article  CAS  Google Scholar 

  27. Bhattarai S R, Bhattarai N, Yi H K, Hwang P H, Cha D I, Kim H Y. Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials, 2004, 25(13): 2595–2602

    Article  CAS  PubMed  Google Scholar 

  28. Puppi D, Piras A M, Detta N, Dinucci D, Chiellini F. Poly(lactic-coglycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomaterialia, 2010, 6(4): 1258–1268

    Article  CAS  PubMed  Google Scholar 

  29. Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomaterialia, 2007, 3(5): 745–756

    Article  CAS  PubMed  Google Scholar 

  30. Hosseini Y, Emadi R, Kharaziha M, Doostmohammadi A. Reinforcement of electrospun poly(ε-caprolactone) scaffold using diopside nanopowder to promote biological and physical properties. Journal of Applied Polymer Science, 2017, 134(6): 44433–44441

    Article  CAS  Google Scholar 

  31. Du Y, Chen X, Koh Y H, Lei B. Facilely fabricating PCL nanofibrous scaffolds with hierarchical pore structure for tissue engineering. Materials Letters, 2014, 122(22): 62–65

    Article  CAS  Google Scholar 

  32. Miszuk J M, Xu T, Yao Q, Fang F, Childs J D, Hong Z, Tao J, Fong H, Sun H. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Applied Materials Today, 2018, 10(1): 194–202

    Article  PubMed  Google Scholar 

  33. Valizadeh A, Bakhtiary M, Akbarzadeh A, Salehi R, Frakhani S M, Ebrahimi O, Rahmati-Yamchi M, Davaran S. Preparation and characterization of novel electrospun poly(e-caprolactone)-based nanofibrous scaffolds. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(2): 504–509

    Article  CAS  PubMed  Google Scholar 

  34. Ni P, Ding Q, Fan M, Liao J, Qian Z, Luo J, Li X, Luo F, Yang Z, Wei Y. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials, 2014, 35(1): 236–248

    Article  CAS  PubMed  Google Scholar 

  35. Sá MB, Ralph MT, Nascimento D C O, Ramos C S, Barbosa IMS, Sá F B, Lima-Filho J. Phytochemistry and preliminary assessment of the antibacterial activity of chloroform extract of Amburana cearensis (Allemão) AC Sm. against Klebsiella pneumoniae carbapenemase-producing strains. Evidence-Based Complementary and Alternative Medicine, 2014, 2014: 1–7

    Article  Google Scholar 

  36. Nageeb A, Al-Tawashi A, Mohammad Emwas A H, Abdel-Halim Al-Talla Z, Al-Rifai N. Comparison of artemisia annua bioactivities between traditional medicine and chemical extracts. Current Bioactive Compounds, 2013, 9(4): 324–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabir M S, Ahmad D S, Hussain I M, Tahir K M. Antibacterial activity of Elaeagnus umbellata (Thunb.) a medicinal plant from Pakistan. Saudi Medical Journal, 2007, 28(2): 259–263

    PubMed  Google Scholar 

  38. Suganya S, Venugopal J, Ramakrishna S, Lakshmi B, Giri Dev V. Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration. Journal of Applied Polymer Science, 2014, 131(3): 39835–39845

    Article  CAS  Google Scholar 

  39. Kim D K, Kim J I, Hwang T I, Sim B R, Khang G. Bioengineered osteoinductive Broussonetia kazinoki/silk fibroin composite scaffolds for bone tissue regeneration. ACS Applied Materials & Interfaces, 2017, 9(2): 1384–1394

    Article  CAS  Google Scholar 

  40. Suganya S, Senthil Ram T, Lakshmi B, Giridev V. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. Journal of Applied Polymer Science, 2011, 121(5): 2893–2899

    Article  CAS  Google Scholar 

  41. Talaei-Khozani T, Vojdani Z, Dehghani F, Heidari E, Kharazinejad E, Panjehshahin M R. Toxic effects of Elaeagnus angustifolia fruit extract on chondrogenesis and osteogenesis in mouse limb buds. Tokai Journal of Experimental and Clinical Medicine, 2011, 36(3): 63–70

    PubMed  Google Scholar 

  42. Khodakarm-Tafti A, Mehrabani D, Homafar L, Farjanikish G. Healing effects of Elaeagnus angustifolia extract in experimentally induced ulcerative colitis in rats. Journal of Pharmacologicaly Toxicologicaly, 2015, 10(1): 29–35

    Article  CAS  Google Scholar 

  43. Farzaei M H, Bahramsoltani R, Abbasabadi Z, Rahimi R. A comprehensive review on phytochemical and pharmacological aspects of Elaeagnus angustifolia L. Journal of Pharmacy and Pharmacology, 2015, 67(11): 1467–1480

    Article  CAS  PubMed  Google Scholar 

  44. Hosseinzadeh H, Rahimi R. Anti-inflammatory effects of Elaeagnus angustifolia L. fruits in mice and rats. Iranian Journal of Medical Sciences, 1999, 24: 143–147

    Google Scholar 

  45. Ramezani M, Hosseinzadeh H, Daneshmand N. Antinociceptive effect of Elaeagnus angustifolia fruit seeds in mice. Fitoterapia, 2001, 72(3): 255–262

    Article  CAS  PubMed  Google Scholar 

  46. Hosseinzadeh H, Ramezani M, Namjo N. Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice. Journal of Ethnopharmacology, 2003, 84(2-3): 275–278

    Article  PubMed  Google Scholar 

  47. Ahmadiani A, Hosseiny J, Semnanian S, Javan M, Saeedi F, Kamalinejad M, Saremi S. Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. Journal of Ethnopharmacology, 2000, 72(1-2): 287–292

    Article  CAS  PubMed  Google Scholar 

  48. Gürbüz I, Ustün O, Yesilada E, Sezik E, Kutsal O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Journal of Ethnopharmacology, 2003, 88(1): 93–97

    Article  PubMed  Google Scholar 

  49. Mehrabani Natanzi M, Pasalar P, Kamalinejad M, Dehpour A R, Tavangar S M, Sharifi R, Ghanadian N, Rahimi-Balaei M, Gerayesh-Nejad S. Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats. Acta Medica Iranica, 2012, 50(9): 589–596

    PubMed  Google Scholar 

  50. Panahi Y, Alishiri G H, Bayat N, Hosseini S M, Sahebkar A. Efficacy of Elaeagnus Angustifolia extract in the treatment of knee osteoarthritis: A randomized controlled trial. EXCLI Journal, 2016, 15: 203–210

    PubMed  PubMed Central  Google Scholar 

  51. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M, Shahlari N, Hamidpour R. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. Journal of Traditional and Complementary Medicine, 2016, 7(1): 24–29

    Article  PubMed  PubMed Central  Google Scholar 

  52. Amiri Tehranizadeh Z, Baratian A, Hosseinzadeh H. Russian olive (Elaeagnus angustifolia) as a herbal healer. BioImpacts, 2016, 6(3): 155–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mofid M, Sadraie S H, Imani H, Torkaman G, Kaka G, Naghii M R, Alishiri G, Asadi M H. The effect of mesenchymal stem cells and aqueous extract of Elaeagnus angustifolia on the mechanical properties of articular cartilage in an experimental model of rat osteoarthritis. Anatomical Sciences Journal, 2015, 12(2): 68–74

    Google Scholar 

  54. Dabbaghmanesh M H, Noorafshan A, Talezadeh P, Tanideh N, Koohpeyma F, Iraji A, Bakhshayeshkaram M, Montazeri-Najafabady N. Stereological investigation of the effect of Elaeagnus angustifolia fruit hydroalcoholic extract on osteoporosis in ovariectomized rats. Avicenna Journal of Phytomedicine, 2017, 7 (3): 261–274

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Junqueira L, Carneiro J, Kelley R. Adipose tissue. In: Malley J, Lebowiz H, Boyle P J, eds. Basic Histology Text & Atlas. 11th ed. New York: McGraw-Hill, 2005: 123–127

    Google Scholar 

  56. García-Villalba R, Larrosa M, Possemiers S, Tomás-Barberán F A, Espín J C. Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: Comparison between pre- and postmenopausal women. European Journal of Nutrition, 2014, 53(4): 1015–1027

    Article  PubMed  CAS  Google Scholar 

  57. Chen J R, Lazarenko O P, Wu X, Kang J, Blackburn M L, Shankar K, Badger T M, Ronis M J. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/ß-catenin canonical Wnt signaling. Journal of Bone and Mineral Research, 2010, 25(11): 2399–2411

    Article  CAS  PubMed  Google Scholar 

  58. Bakhtiari M, Salehi R, Akbarzadeh A, Davaran S. Development of novel doxorubicin loaded biodegradable polymeric nanofibers as the anticancer drug delivery systems. BioNanoScience, 2018, 8(1): 60–66

    Article  Google Scholar 

  59. Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A, Arpanaei A. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Research International, 2014, 2014: 1–13

    Article  CAS  Google Scholar 

  60. Venugopal J R, Low S, Choon A T, Kumar A B, Ramakrishna S. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artificial Organs, 2008, 32(5): 388–397

    Article  CAS  PubMed  Google Scholar 

  61. Aghazadeh M, Samiei M, Alizadeh E, Porkar P, Bakhtiyari M, Salehi R. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers and Polymers, 2017, 18(8): 1468–1477

    Article  CAS  Google Scholar 

  62. Rio D C, Ares M Jr, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010, 2010(6): t5439

    Article  Google Scholar 

  63. Cho S J, Jung S M, Kang M, Shin H S, Youk J H. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/ PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer, 2015, 69(14): 95–102

    Article  CAS  Google Scholar 

  64. Canbolat M F, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 115(3): 15–21

    Article  CAS  PubMed  Google Scholar 

  65. Chen Q, Chen J, Du H, Li Q, Chen J, Zhang G, Liu H, Wang J. Structural characterization and antioxidant activities of polysaccharides extracted from the pulp of Elaeagnus angustifolia L. International Journal of Molecular Sciences, 2014, 15(7): 11446–11455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering. Journal of Biomaterials Science. Polymer Edition, 2017, 28(16): 1797–1825

    CAS  PubMed  Google Scholar 

  67. Leung V, Ko F. Biomedical applications of nanofibers. Polymers for Advanced Technologies, 2011, 22(3): 350–365

    Article  CAS  Google Scholar 

  68. Zijah V, Salehi R, Aghazadeh M, Samiei M, Alizadeh E, Davaran S. Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocyte-stimulating hormone. In vitro Cellular & Developmental Biology. Animal, 2017, 53(6): 502–512

    CAS  Google Scholar 

  69. Li D, Sun H, Hu X, Lin Y, Xu B. Facile method to prepare PLGA/ hydroxyapatite composite scaffold for bone tissue engineering. Materials Technology, 2013, 28(6): 316–323

    Article  CAS  Google Scholar 

  70. Pisani C, Rascol E, Dorandeu C, Charnay C, Guari Y, Chopineau J, Devoisselle J M, Prat O. Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 2017, 11(7): 871–890

    Article  CAS  PubMed  Google Scholar 

  71. Preethi Soundarya S, Sanjay V, Haritha Menon A, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110(6): 74–87

    Article  CAS  PubMed  Google Scholar 

  72. Zhang J F, Li G, Chan C Y, Meng C L, LinMC, Chen Y C, HeML, Leung P C, Kung H F. Flavonoids of Herba epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/ß-catenin signaling pathway. Molecular and Cellular Endocrinology, 2010, 314(1): 70–74

    Article  CAS  PubMed  Google Scholar 

  73. Alizadeh E, Zarghami N, Eslaminejad M B, Akbarzadeh A, Barzegar A, Mohammadi S A. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(1): 157–164

    Article  CAS  PubMed  Google Scholar 

  74. Shotorbani B B, Alizadeh E, Salehi R, Barzegar A. Adhesion of mesenchymal stem cells to biomimetic polymers: A review. Materials Science and Engineering C, 2017, 71(80): 1192–1200

    Article  CAS  PubMed  Google Scholar 

  75. Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In vitro Cellular & Developmental Biology. Animal, 2016, 52(4): 479–487

    CAS  Google Scholar 

  76. Samiei M, Aghazadeh M, Alizadeh E, Aslaminabadi N, Davaran S, Shirazi S, Ashrafi F, Salehi R. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Advanced Pharmaceutical Bulletin, 2016, 6(3): 353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were financially supported by a grant (No. 94/104) from the Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roya Salehi or Ali Ramazani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hokmabad, V.R., Davaran, S., Aghazadeh, M. et al. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Front. Chem. Sci. Eng. 13, 108–119 (2019). https://doi.org/10.1007/s11705-018-1742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1742-7

Keywords

Navigation