Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches

Abstract

In this work, we have synthesized two polymer-grafted cation exchangers: one via the grafting-from approach, in which sulfopropyl methacrylate (SPM) is grafted through atom transfer radical polymerization onto Sepharose FF (the thus resulting exchanger is referred as Sep-g-SPM), and another via the grafting-to approach, in which the polymer of SPM is directly coupled onto Sepharose FF (the thus resulting exchanger is called as Sep-pSPM). Protein adsorption on these two cation exchangers have been also investigated. At the same ligand density, Sep-g-SPM has a larger accessible pore radius and a smaller depth of polymer layer than SeppSPM, due to the controllable introduction of polymer chains with the regular distribution of the ligand. Therefore, high-capacity adsorption of lysozyme and γ-globulin could be achieved simultaneously in Sep-g-SPM with an ionic capacity (IC) of 308 mmol$L–1. However, Sep-pSPM has an irregular chain distribution and different architecture of polymer layer, which lead to more serious repulsive interaction to proteins, and thus Sep-pSPM has a lower adsorption capacity for γ-globulin than Sep-g-SPM with the similar IC. Moreover, the results from protein uptake experiments indicate that the facilitated transport of adsorbed γ-globulin occurs only in Sep-pSPM and depends on the architecture of polymer layers. Our research provides a clear clue for the development of high-performance protein chromatography.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Savina I, NGalaev I Y, Mattiasson B. Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes. Journal of Molecular Recognition, 2006, 19(4): 313–321

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Perez-Almodovari E X, Wu Y, Carta G. Multicomponent adsorption of monoclonal antibodies on macroporous and polymer grafted cation exchangers. Journal of Chromatography A, 2012, 1264: 48–56

    Article  CAS  Google Scholar 

  3. 3.

    Basconi J E, Carta G, Shirts M R. Multiscale modeling of protein adsorption and transport in macroporous and polymer-grafted ion exchangers. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(11): 3888–3901

    Article  CAS  Google Scholar 

  4. 4.

    Lenhoff A M. Protein adsorption and transport in polymerfunctionalized ion-exchangers. Journal of Chromatography A, 2011, 1218(49): 8748–8759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stone M C, Carta G. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Journal of Chromatography A, 2007, 1146(2): 202–215

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Wang H Y, Sun Y, Zhang S L, Luo J, Shi Q H. Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization. Biochemical Engineering Journal, 2016, 113: 19–29

    Article  CAS  Google Scholar 

  7. 7.

    Bowes B D, Koku H, Czymmek K J, Lenhoff A M. Protein adsorption and transport in dextran-modified ion-exchange media. I: Adsorption. Journal of Chromatography A, 2009, 1216(45): 7774–7784

    CAS  PubMed  Google Scholar 

  8. 8.

    Yu L L, Tao S P, Dong X Y, Sun Y. Protein adsorption to poly (ethylenimine)-modified Sepharose FF: I. A critical ionic capacity for drastically enhanced capacity and uptake kinetics. Journal of Chromatography A, 2013, 1305: 76–84

    CAS  PubMed  Google Scholar 

  9. 9.

    Shi Q H, Jia G D, Sun Y. Dextran-grafted cation exchanger based on superporous agarose gel: Adsorption isotherms, uptake kinetics and dynamic protein adsorption performance. Journal of Chromatography A, 2010, 1217(31): 5084–5091

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Tao Y, Carta G, Ferreira G, Robbins D. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: I. Adsorption equilibrium. Journal of Chromatography A, 2011, 1218(11): 1519–1529

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Zhang S L, Zhao M, Yang W, Luo J, Sun Y, Shi Q H. A novel polymer-grafted cation exchanger for high-capacity protein chromatography: The role of polymer architecture. Biochemical Engineering Journal, 2017, 128: 218–227

    Article  CAS  Google Scholar 

  12. 12.

    Unsal E, Elmas B, Caglayan B, Tuncel M, Patir S, Tuncel A. Preparation of an ion-exchange chromatographic support by a “grafting from” strategy based on atom transfer radical polymerization. Analytical Chemistry, 2006, 78(16): 5868–5875

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Yu L L, Sun Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: II. Effect of ionic strength. Journal of Chromatography A, 2013, 1305: 85–93

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Chang C, Lenhoff A M. Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. Journal of Chromatography A, 1998, 827(2): 281–293

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Staby A, Jensen I H, Mollerup I. Comparison of chromatographic ion-exchange resins I. Strong anion-exchange resins. Journal of Chromatography A, 2000, 897(1–2): 99–111

    CAS  PubMed  Google Scholar 

  16. 16.

    Bowes B D, Lenhoff A M. Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough. Journal of Chromatography A, 2011, 1218 (29): 4698–4708

    CAS  PubMed  Google Scholar 

  17. 17.

    Bowes B D, Lenhoff A M. Protein adsorption and transport in dextran-modified ion-exchange media. III. Effects of resin charge density and dextran content on adsorption and intraparticle uptake. Journal of Chromatography A, 2011, 1218(40): 7180–7188

    CAS  PubMed  Google Scholar 

  18. 18.

    Ubiera A R, Carta G. Radiotracer measurements of protein mass transfer: Kinetics in ion exchange media. Biotechnology Journal, 2006, 1(6): 665–674

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Dismer F, Petzold M, Hubbuch J. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents. Journal of Chromatography A, 2008, 1194(1): 11–21

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Hubbuch J, Linden T, Knieps E, Ljunglof A, Thommes J, Kula MR. Mechanism and kinetics of protein transport in chromatographic media studied by confocal laser scanning microscopy. Part I. The interplay of sorbent structure and fluid phase conditions. Journal of Chromatography A, 2003, 1021(1–2): 93–104

    CAS  PubMed  Google Scholar 

  21. 21.

    Chan J W, Huang A, Uhrich K E. Self-assembled amphiphilic macromolecule coatings: Comparison of grafting-from and graftingto approaches for bioactive delivery. Langmuir, 2016, 32(20): 5038–5047

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Reznik C, Landes C F. Transport in supported polyelectrolyte brushes. Accounts of Chemical Research, 2012, 45(11): 1927–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hansson S, Trouillet V, Tischer T, Goldmann A S, Carlmark A, Barner-Kowollik C, Malmstrom E. Grafting efficiency of synthetic polymers onto biomaterials: A comparative study of grafting-from versus grafting-to. Biomacromolecules, 2013, 14(1): 64–74

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Minko S. Grafting on solid surfaces: “Grafting to” and “grafting from” methods. In: Stamm M, ed. Polymer Surfaces and Interfaces: Characterization, Modification and Applications. Berlin: Springer Berlin Heidelberg, 2008, 215–234

  25. 25.

    Wang Z G, Wan L S, Xu Z K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007, 304(1–2): 8–23

    Article  CAS  Google Scholar 

  26. 26.

    Yu L L, Shi Q H, Sun Y. Effect of dextran layer on protein uptake to dextran-grafted adsorbents for ion-exchange and mixed-mode chromatography. Journal of Separation Science, 2011, 34(21): 2950–2959

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Shi Q H, Zhou X, Sun Y. A novel superporous agarose medium for high-speed protein chromatography. Biotechnology and Bioengineering, 2005, 92(5): 643–651

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Weaver L E, Carta G. Protein adsorption on cation exchangers: Comparison of macroporous and gel-composite media. Biotechnology Progress, 1996, 12(3): 342–355

    Article  CAS  Google Scholar 

  29. 29.

    Dephillips P, Lenhoff A M. Pore size distributions of cationexchange adsorbents determined by inverse size-exclusion chromatography. Journal of Chromatography A, 2000, 883(1–2): 39–54

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Li Q, Imbrogno J, Belfort G, Wang X L. Making polymeric membranes antifouling via “grafting from” polymerization of zwitterions. Journal of Applied Polymer Science, 2015, 132(21): n/a

    Google Scholar 

  31. 31.

    Dismer F, Hubbuch J. A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. Journal of Chromatography A, 2007, 1149(2): 312–320

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Koshari S H S, Wagner N J, Lenhoff A M. Effects of resin architecture and protein size on nanoscale protein distribution in ionexchange media. Langmuir, 2018, 34(2): 673–684

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Yang H, Gurgel P V, Carbonell R G. Purification of human immunoglobulin G via Fc-specific small peptide ligand affinity chromatography. Journal of Chromatography A, 2009, 1216(6): 910–918

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Fair B D, Jamieson A M. Studies of protein adsorption on polystyrene latex surfaces. Journal of Colloid and Interface Science, 1980, 77(2): 525–534

    Article  CAS  Google Scholar 

  35. 35.

    Luo J, Wan Y. Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 2011, 372(1–2): 145–153

    Article  CAS  Google Scholar 

  36. 36.

    CYoshikawa A, Goto Y, Tsujii T, Fukuda T, Kimura K, Yamamoto A, Kishida. Protein repellency of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules, 2006, 39(6): 2284–2290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 21476166 and 21236005), the Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 2014KF-03) and the Tianjin Natural Science Foundation (15JCYBJC48500).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qinghong Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Liu, R., Luo, J. et al. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches. Front. Chem. Sci. Eng. 13, 120–132 (2019). https://doi.org/10.1007/s11705-018-1730-y

Download citation

Keywords

  • polymer-grafted ionic exchanger
  • grafting technique
  • protein adsorption
  • atom transfer radical polymerization
  • γ-globulin