Skip to main content
Log in

Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Poly(D,L-lactic-co-glycolic acid) (PLGA)/poly (lactic acid) (PLA) microspheres/nanoparticles are one of the most successful drug delivery systems (DDS) in lab and clinic. Because of good biocompatibility and biodegradability, they can be used in various areas, such as long-term release system, vaccine adjuvant, tissue engineering, etc. There have been 15 products available on the US market, but the system still has many problems during development and manufacturing, such as wide size distribution, drug stability issues, and so on. Recently, many new and modified methods have been developed to overcome the above problems. Some of the methods are easy to scale up, and have been available on the market to achieve pilot scale or even industrial production scale. Furthermore, the relevant FDA guidance on the DDS is still incomplete, especially for abbreviated new drug application. In this review, we present some recent achievement of the PLGA/PLA microspheres/nanoparticles, and discuss some promising manufacturing methods. Finally, we focus on the current FDA guidance on the DDS. The review provides an overview on the development of the system in pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey A J, Kaestner S A, Sutter D E, Harvey N G, Mikszta J A, Pettis R J. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharmaceutical Research, 2011, 28(1): 107–116

    Article  CAS  PubMed  Google Scholar 

  2. Nair L S, Laurencin C T. Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007, 32(8–9): 762–798

    Article  CAS  Google Scholar 

  3. Okada H. One-and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Advanced Drug Delivery Reviews, 1997, 28(1): 43–70

    Article  CAS  PubMed  Google Scholar 

  4. Han F Y, Thurecht K J, Whittaker A K, Smith M T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Frontiers in Pharmacology, 2016, 7: 185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Washington M A, Swiner D J, Bell K R, Fedorchak M V, Little S R, Meyer T Y. The impact of monomer sequence and stereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid) matrices. Biomaterials, 2017, 117: 66–76

    Article  CAS  PubMed  Google Scholar 

  6. Tomic I, Vidis-Millward A, Mueller-Zsigmondy M, Cardot J M. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism. International Journal of Pharmaceutics, 2016, 505(1–2): 42–51

    Article  CAS  PubMed  Google Scholar 

  7. Zhu G Z, Schwendeman S P. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: Mechanism of stabilization by basic additives. Pharmaceutical Research, 2000, 17 (3): 351–357

    Article  CAS  PubMed  Google Scholar 

  8. Kwak H H, Shim W S, Choi M K, Son M K, Kim Y J, Yang H C, Kim T H, Lee G I, Kim B M, Kang S H, et al. Development of a sustained-release recombinant human growth hormone formulation. Journal of Controlled Release, 2009, 137(2): 160–165

    Article  CAS  PubMed  Google Scholar 

  9. Kim B S, Oh J M, Hyun H, Kim K S, Lee S H, Kim Y H, Park K, Lee H B, Kim M S. Insulin-loaded microcapsules for in vivo delivery. Molecular Pharmaceutics, 2009, 6(2): 353–365

    Article  CAS  PubMed  Google Scholar 

  10. Kwak H H, Shim W S, Hwang S, Son M K, Kim Y J, Kim T H, Yoon Z H, Youn H J, Lee G I, Kang S H, et al. Pharmacokinetics and efficacy of a biweekly dosage formulation of exenatide in Zucker diabetic fatty (ZDF) rats. Pharmaceutical Research, 2009, 26(11): 2504–2512

    Article  CAS  PubMed  Google Scholar 

  11. Gaspar M C, Gregoire N, Sousa J J S, Pais A A C C, Lamarche I, Gobin P, Olivier J C, Marchand S, Couet W. Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres. European Journal of Pharmaceutical Sciences, 2016, 93: 184–191

    Article  CAS  PubMed  Google Scholar 

  12. Feng T S, Tian H Y, Xu C N, Lin L, Xie Z G, Lam M H W, Liang H J, Chen X S. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88 (3): 1086–1093

    Article  CAS  PubMed  Google Scholar 

  13. Salama A H, Mahmoud A A, Kamel R. A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: In vitro and in vivo evaluations. AAPS PharmSciTech, 2016, 17(5): 1159–1172

    Article  CAS  PubMed  Google Scholar 

  14. Qi F, Wu J, Fan Q Z, He F, Tian G F, Yang T Y, Ma G H, Su Z G. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids and Surfaces. B, Biointerfaces, 2013, 112: 492–498

    Article  CAS  PubMed  Google Scholar 

  15. Parumasivam T, Leung S S Y, Quan D H, Triccas J A, Britton W J, Chan H K. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization. European Journal of Pharmaceutical Sciences, 2016, 88: 1–11

    Article  CAS  PubMed  Google Scholar 

  16. Nath S D, Son S, Sadiasa A, Min Y K, Lee B T. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. International Journal of Pharmaceutics, 2013, 443(1–2): 87–94

    Article  CAS  PubMed  Google Scholar 

  17. Wong V G, Hu M W L. US Patent 6726918 B1, 2004–04-27

    Google Scholar 

  18. Callanan D G, Gupta S, Boyer D S, Ciulla T A, Singer M A, Kuppermann B D, Liu C C, Li X Y, Hollander D A, Schiffman RM, et al. Dexamethasone intravitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema. Ophthalmology, 2013, 120(9): 1843–1851

    Article  PubMed  Google Scholar 

  19. Villanueva J R, Bravo-Osuna I, Herrero-Vanrell R, Martinez I T M, Navarro M G. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration. European Journal of Pharmaceutical Sciences, 2016, 92: 287–297

    Article  CAS  Google Scholar 

  20. Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J, Yang T, Qiu S, Ma G. Immune responses to vaccines involving a combined antigennanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials, 2014, 35(23): 6086–6097

    Article  CAS  PubMed  Google Scholar 

  21. ZhangWF,Wang L Y, Yang T Y, Liu Y, Chen X M, Liu Q, Jia J L, Ma G H. Immunopotentiator-loaded polymeric microparticles as robust adjuvant to improve vaccine efficacy. Pharmaceutical Research, 2015, 32(9): 2837–2850

    Article  CAS  PubMed  Google Scholar 

  22. Hidaka S. Conflicting effects by antibodies against connexin36 during the action of intracellular Cyclic-AMP onto electrical synapses of retinal ganglion cells. Journal of Integrative Neuroscience, 2016, 15(4): 571–591

    Article  PubMed  Google Scholar 

  23. Pavot V, Berthet M, Resseguier J, Legaz S, Handke N, Gilbert S C, Paul S, Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (London), 2014, 9(17): 2703–2718

    Article  CAS  Google Scholar 

  24. Liu Q, Chen X, Jia J, Zhang W, Yang T, Wang L, Ma G. pHresponsive poly(D,L-lactic-co-glycolic acid) nanoparticles with rapid antigen release behavior promote immune response. ACS Nano, 2015, 9(5): 4925–4938

    Article  CAS  PubMed  Google Scholar 

  25. Gentile P, Chiono V, Carmagnola I, Hatton P V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 2014, 15(3): 3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar D S. Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 2011, 2011

    Google Scholar 

  27. Wang Q, Gu Z, Jamal S, Detamore M S, Berkland C. Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Engineering. Part A, 2013, 19(23-24): 2586–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Wu X, Xing H L, Zhang G L, Shi Q E L, Liu N, Yang T, Wang D, Qi F, Wang L, Liu H. Porous nanohydroxyapatite/collagen scaffolds loading insulin PLGA particles for restoration of critical size bone defect. ACS Applied Materials & Interfaces, 2017, 9(13): 11380–11391

    Article  CAS  Google Scholar 

  29. Reszko A E, Sadick N S, Magro C M, Farber J. Late-onset subcutaneous nodules after poly-L-lactic acid injection. Dermatologic Surgery, 2009, 35(1): 380–384

    Article  CAS  PubMed  Google Scholar 

  30. Valantin MA, Aubron-Olivier C, Ghosn J, Laglenne E, Pauchard M, Schoen H, Bousquet R, Katz P, Costagliola D, Katlama C. Polylactic acid implants (New-Fill)((R)) to correct facial lipoatrophy in HIV-infected patients: Results of the open-label study VEGA. AIDS (London, England), 2003, 17(17): 2471–2477

    Article  CAS  Google Scholar 

  31. Moyle G J, Lysakova L, Brown S, Sibtain N, Healy J, Priest C, Mandalia S, Barton S E. A randomized open-label study of immediate versus delayed polylactic acid injections for the cosmetic management of facial lipoatrophy in persons with HIV infection. HIV Medicine, 2004, 5(2): 82–87

    Article  CAS  PubMed  Google Scholar 

  32. Lam S M, Azizzadeh B, Graivier M. Injectable poly-L-lactic acid (Sculptra): Technical considerations in soft-tissue contouring. Plastic and Reconstructive Surgery, 2006, 118(3 Suppl): 55s–63s

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh S, Sahu S, Agrawal L, Shiga T, Bandyopadhyay A. Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell. Journal of Integrative Neuroscience, 2016, 15(4): 403–433

    Article  PubMed  Google Scholar 

  34. Gogolewski S, Jovanovic M, Perren S M, Dillon J G, Hughes M K. Tissue-response and in-vivo degradation of selected polyhydroxyacids-polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 1993, 27(9): 1135–1148

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky M D, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials, 2009, 30(10): 1947–1953

    Article  CAS  PubMed  Google Scholar 

  36. Zhang T Z, Zhang Q Y, Chen J S, Fang K, Dou J, Gu N. The controllable preparation of porous PLGA microspheres by the oil/water emulsion method and its application in 3D culture of ovarian cancer cells. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2014, 452: 115–124

    CAS  Google Scholar 

  37. Qi F, Wu J, Sun G Q, Nan F F, Ngai T, Ma G H. Systematic studies of Pickering emulsions stabilized by uniform-sized PLGA particles: Preparation and stabilization mechanism. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(43): 7605–7611

    Article  CAS  Google Scholar 

  38. Xia Y, Wu J, Wei W, Du Y, Wan T, Ma X, An W, Guo A, Miao C, Yue H, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nature Materials, 2018, 17(2): 187–194

    Article  CAS  PubMed  Google Scholar 

  39. Nan F, Wu J, Qi F, Liu Y, Ngai T, Ma G. Uniform chitosan-coated alginate particles as emulsifiers for preparation of stable Pickering emulsions with stimulus dependence. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2014, 456: 246–252

    Article  CAS  Google Scholar 

  40. Qi F, Wu J, Yang T Y, Ma G H, Su Z G. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomaterialia, 2014, 10(10): 4247–4256

    Article  CAS  PubMed  Google Scholar 

  41. Rawat A, Stippler E, Shah V P, Burgess D J. Validation of USP apparatus 4 method for microsphere in vitro release testing using Risperdal Consta. International Journal of Pharmaceutics, 2011, 420 (2): 198–205

    Article  CAS  PubMed  Google Scholar 

  42. Jaworek A. Micro-and nanoparticle production by electrospraying. Powder Technology, 2007, 176(1): 18–35

    Article  CAS  Google Scholar 

  43. Zhang M, Ma Y, Li R, Zeng J, Li Z, Tang Y, Sun D. RhBMP-2-loaded Poly(lactic-co-glycolic acid) microspheres fabricated by coaxial electrospraying for protein delivery. Journal of Biomaterials Science. Polymer Edition, 2017, 28(18): 2205–2219

    Article  CAS  PubMed  Google Scholar 

  44. Della Porta G, Campardelli R, Cricchio V, Oliva F, Maffulli N, Reverchon E. Injectable PLGA/hydroxyapatite/chitosan microcapsules produced by supercritical emulsion extraction technology: An in vitro study on teriparatide/gentamicin controlled release. Journal of Pharmaceutical Sciences, 2016, 105(7): 2164–2172

    Article  CAS  PubMed  Google Scholar 

  45. Falco N, Reverchon E, Della Porta G. Injectable PLGA/hydrocortisone formulation produced by continuous supercritical emulsion extraction. International Journal of Pharmaceutics, 2013, 441 (1-2): 589–597

    Article  CAS  PubMed  Google Scholar 

  46. Della Porta G, Campardelli R, Reverchon E. Monodisperse biopolymer nanoparticles by continuous supercritical emulsion extraction. Journal of Supercritical Fluids, 2013, 76: 67–73

    Article  CAS  Google Scholar 

  47. Campardelli R, Della Porta G, Gomez V, Irusta S, Reverchon E, Santamaria J. Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites. Journal of Nanoparticle Research, 2013, 15(10): 1987–1997

    Article  CAS  Google Scholar 

  48. Della Porta G, Falco N, Giordano E, Reverchon E. PLGA microspheres by supercritical emulsion extraction: A study on insulin release in myoblast culture. Journal of Biomaterials Science. Polymer Edition, 2013, 24(16): 1831–1847

    Article  CAS  PubMed  Google Scholar 

  49. Della Porta G, Nguyen B N, Campardelli R, Reverchon E, Fisher J P. Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research. Part A, 2015, 103(6): 2161–2171

    Article  CAS  PubMed  Google Scholar 

  50. Campardelli R, Della Porta G, Gomez L, Irusta S, Reverchon E, Santamaria J. Au-PLA nanocomposites for photothermally controlled drug delivery. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(4): 409–417

    Article  CAS  Google Scholar 

  51. Jiang W L, Schwendeman S P. Stabilization of tetanus toxoid encapsulated in PLGA microspheres. Molecular Pharmaceutics, 2008, 5(5): 808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Z Q, Li X, Xiu B S, Duan C M, Li J X, Zhang X H, Yang X Q, Dai W H, Johnson H, Zhang H Q, et al. A novel and simple preparative method for uniform-sized PLGA microspheres: Preliminary application in antitubercular drug delivery. Colloids and Surfaces. B, Biointerfaces, 2016, 145: 679–687

    Article  CAS  PubMed  Google Scholar 

  53. Hung L H, Teh S Y, Jester J, Lee A P. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab on a Chip, 2010, 10(14): 1820–1825

    Article  CAS  PubMed  Google Scholar 

  54. Wei Y, Wang Y X, Wang L Y, Hao D X, Ma G H. Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification. Colloids and Surfaces. B, Biointerfaces, 2011, 87(2): 399–408

    Article  CAS  PubMed  Google Scholar 

  55. Crowley M M, Zhang F, Repka M A, Thumma S, Upadhye S B, Battu S K, McGinity J W, Martin C. Pharmaceutical applications of hot-melt extrusion: Part I. Drug Development and Industrial Pharmacy, 2007, 33(9): 909–926

    Article  CAS  PubMed  Google Scholar 

  56. Guo Y, Yang Y, He L, Sun R, Pu C, Xie B, He H, Zhang Y, Yin T, Wang Y, Tang X. Injectable sustained-release depots of PLGA microspheres for insoluble drugs prepared by hot-melt extrusion. Pharmaceutical Research, 2017, 34(10): 2211–2222

    Article  CAS  PubMed  Google Scholar 

  57. Bakri S J, Omar A F. Evolution of vitreomacular traction following the use of the dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema secondary to central retinal vein occlusion. Journal of Ocular Pharmacology and Therapeutics, 2012, 28(5): 547–549

    Article  CAS  PubMed  Google Scholar 

  58. Tice T. US Patent 2012/0156304 A1, 2012–06-21

    Google Scholar 

  59. Zeigerson E. US Patent 8916196 B2, 2014–12-23

    Google Scholar 

  60. Ma G H. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. Journal of Controlled Release, 2014, 193: 324–340

    Article  CAS  PubMed  Google Scholar 

  61. Qi F, Yang L Q, Wu J, Ma G H, Su Z G. Microcosmic mechanism of dication for inhibiting acylation of acidic peptide. Pharmaceutical Research, 2015, 32(7): 2310–2317

    Article  CAS  PubMed  Google Scholar 

  62. Liu R, Ma G H, Meng F T, Su Z G. Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method. Journal of Controlled Release, 2005, 103(1): 31–43

    Article  CAS  PubMed  Google Scholar 

  63. Liu R, Ma G H, Wan Y H, Su Z G. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method. Colloids and Surfaces. B, Biointerfaces, 2005, 45(3–4): 144–153

    Article  CAS  PubMed  Google Scholar 

  64. Liu R, Huang S S, Wan Y H, Ma G H, Su Z G. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids and Surfaces. B, Biointerfaces, 2006, 51(1): 30–38

    Article  CAS  PubMed  Google Scholar 

  65. Lloyd D M, Norton I T, Spyropoulos F. Processing effects during rotating membrane emulsification. Journal of Membrane Science, 2014, 466: 8–17

    Article  CAS  Google Scholar 

  66. Liang Y J, Yu H, Feng G, Zhuang L, Xi W, Ma M, Chen J, Gu N, Zhang Y. High-performance poly(lactic-co-glycolic acid)-magnetic microspheres prepared by rotating membrane emulsification for transcatheter arterial embolization and magnetic ablation in VX2 liver tumors. ACS Applied Materials & Interfaces, 2017, 9(50): 43478–43489

    Article  CAS  Google Scholar 

  67. Gupta V, Khan Y, Berkland C J, Laurencin C T, Detamore M S. Microsphere-based scaffolds in regenerative engineering. Annual Review of Biomedical Engineering, 2017, 19(1): 135–161

    Article  CAS  PubMed  Google Scholar 

  68. Berkland C, Kim K K, Pack D W. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. Journal of Controlled Release, 2001, 73(1): 59–74

    Article  CAS  PubMed  Google Scholar 

  69. Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. Journal of Controlled Release, 2010, 146(2): 241–260

    Article  CAS  PubMed  Google Scholar 

  70. Kumar R, Palmieri MJ Jr. Points to consider when establishing drug product specifications for parenteral microspheres. AAPS Journal, 2010, 12(1): 27–32

    Article  CAS  PubMed  Google Scholar 

  71. Toguchi H. Sterility assurance of microspheres. Journal of Controlled Release, 1999, 62(1–2): 51–55

    Article  CAS  PubMed  Google Scholar 

  72. Wong J, Brugger A, Khare A, Chaubal M, Papadopoulos P, Rabinow B, Kipp J, Ning J. Suspensions for intravenous (IV) injection: A review of development, preclinical and clinical aspects. Advanced Drug Delivery Reviews, 2008, 60(8): 939–954

    Article  CAS  PubMed  Google Scholar 

  73. Wei Y, Wang Y X, Wang W, Ho S V, Qi F, Ma G H, Su Z G. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres. Langmuir, 2012, 28(39): 13984–13992

    Article  CAS  PubMed  Google Scholar 

  74. Morlock M, Koll H, Winter G, Kissel T. Microencapsulation of Rherythropoietin, using biodegradable poly(D,L-lactide-co-glycolide): Protein stability and the effects of stabilizing excipients. European Journal of Pharmaceutics and Biopharmaceutics, 1997, 43(1): 29–36

    Article  CAS  Google Scholar 

  75. Cleland J L, Duenas E T, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A. Development of poly-(D,L-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. Journal of Controlled Release, 2001, 72(1–3): 13–24

    Article  CAS  PubMed  Google Scholar 

  76. Meinel L, Illi O E, Zapf J, Malfanti M, Merkle H P, Gander B. Stabilizing insulin-like growth factor-I in poly(D,L-lactide-coglycolide) microspheres. Journal of Controlled Release, 2001, 70 (1-2): 193–202

    Article  CAS  PubMed  Google Scholar 

  77. Kang J, Wu F, Cai Y P, Xu MX, He M, Yuan WE. Development of recombinant human growth hormone (RhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. European Journal of Pharmaceutical Sciences, 2014, 62: 141–147

    Article  CAS  PubMed  Google Scholar 

  78. Hong X Y, Wei L M, Ma L Q, Chen Y H, Liu Z G, Yuan W. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion. International Journal of Nanomedicine, 2013, 8: 2433–2441

    PubMed  PubMed Central  Google Scholar 

  79. Sandor M, Riechel A, Kaplan I, Mathiowitz E. Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres. Biochimica Et Biophysica Acta-General Subjects, 2002, 1570(1): 63–74

    Article  CAS  Google Scholar 

  80. Zhang Y, Schwendeman S P. Minimizing acylation of peptides in PLGA microspheres. Journal of Controlled Release, 2012, 162(1): 119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lucke A, Kiermaier J, Gopferich A. Peptide acylation by poly (alpha-hydroxy esters). Pharmaceutical Research, 2002, 19(2): 175–181

    Article  CAS  PubMed  Google Scholar 

  82. Schwendeman S P, Sophocleous A M, Zhang Y. A new class of inhibitors of peptide sorption and acylation in PLGA. Journal of Controlled Release, 2009, 137(3–4): 179–184

    PubMed  PubMed Central  Google Scholar 

  83. Pakulska M M, Donaghue I E, Obermeyer J M, Tuladhar A, McLaughlin C K, Shendruk T N, Shoichet M S. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Science Advances, 2016, 2(5): e1600519–e1600519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rawat A, Burgess D J. USP apparatus 4 method for in vitro release testing of protein loaded microspheres. International Journal of Pharmaceutics, 2011, 409(1–2): 178–184

    Article  CAS  PubMed  Google Scholar 

  85. Andhariya J V, Burgess D J. Recent advances in testing of microsphere drug delivery systems. Expert Opinion on Drug Delivery, 2016, 13(4): 593–608

    Article  CAS  PubMed  Google Scholar 

  86. Zolnik B S, Leary P E, Burgess D J. Elevated temperature accelerated release testing of PLGA microspheres. Journal of Controlled Release, 2006, 112(3): 293–300

    Article  CAS  PubMed  Google Scholar 

  87. ICH Harmonised Tripartite Guideline. Stability testing of new drug substances and products Q1a (R2). 2003

    Google Scholar 

  88. Zheng N, Sun D J D, Zou P, Jiang W L. Scientific and regulatory considerations for generic complex drug products containing nanomaterials. AAPS Journal, 2017, 19(3): 619–631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant Nos. 21336010, 21776287 and 21576268) for the financial support, and Mr. Jianping Tan (Staidson (Beijing) Biopharmaceuticals Co., Ltd) for information support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Qi or Guanghui Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Wu, J., Li, H. et al. Recent research and development of PLGA/PLA microspheres/nanoparticles: A review in scientific and industrial aspects. Front. Chem. Sci. Eng. 13, 14–27 (2019). https://doi.org/10.1007/s11705-018-1729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1729-4

Keywords

Navigation