Skip to main content
Log in

S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Porous polymers have been recently recognized as one of the most important precursors for fabrication of heteroatom-doped porous carbons due to the intrinsic porous structure, easy available heteroatom-containing monomers and versatile polymerization methods. However, the heteroatom elements in as-produced porous carbons are quite relied on monomers. So far, the manipulating of heteroatom in porous polymer derived porous carbons are still very rare and challenge. In this work, a sulfur-enriched porous polymer, which was prepared from a diacetylene-linked porous polymer, was used as precursor to prepare S-doped and/or N-doped porous carbons under nitrogen and/or ammonia atmospheres. Remarkably, S content can sharply decrease from 36.3% to 0.05% after ammonia treatment. The N content and specific surface area of as-fabricated porous carbons can reach up to 1.32% and 1508 m2∙g–1, respectively. As the electrode materials for electrical double-layer capacitors, as-fabricated porous carbons exhibit high specific capacitance of up to 431.6 F∙g–1 at 5 mV∙s–1 and excellent cycling stability of 99.74% capacitance retention after 3000 cycles at 100 mV∙s–1. Furthermore, as the electrochemical catalysts for oxygen reduction reaction, as-fabricated porous carbons presented ultralow half-wave-potential of 0.78 V versus RHE. This work not only offers a new strategy for manipulating S and N doping features for the porous carbons derived from S-containing porous polymers, but also paves the way for the structureperformance interrelationship study of heteroatoms codoped porous carbon for energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V. 2D materials. Graphene, related twodimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347(6217): 1246501

    Article  CAS  PubMed  Google Scholar 

  2. Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6(1): 7221

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41(2): 797–828

    Article  CAS  PubMed  Google Scholar 

  4. Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377

    Article  CAS  PubMed  Google Scholar 

  5. Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Advanced Materials, 2015, 27(3): 403–427

    Article  CAS  PubMed  Google Scholar 

  6. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730

    Article  CAS  Google Scholar 

  7. Wu Z S, Parvez K, Feng X, MμLlen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merlet C, Rotenberg B, Madden P A, Taberna P L, Simon P, Gogotsi Y, Salanne M. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11(4): 306–310

    Article  CAS  PubMed  Google Scholar 

  9. Zhuang X, Zhang F, Wu D, Feng X. Graphene coupled Schiff-base porous polymers: Towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Advanced Materials, 2014, 26(19): 3081–3086

    Article  CAS  PubMed  Google Scholar 

  10. Zhuang X, Zhang F, Wu D, Forler N, Liang H, Wagner M, Gehrig D, Hansen M R, Laquai F, Feng X. Two-dimensional sandwichtype, graphene-based conjugated microporous polymers. Angewandte Chemie International Edition, 2013, 52(37): 9668–9672

    Article  CAS  PubMed  Google Scholar 

  11. Huang X, Yang L, Hao S, Zheng B, Yan L, Qu F, Asiri A M, Sun X. Sun X. N-Doped carbon dots: A metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 2017, 4(3): 537–540

    CAS  Google Scholar 

  12. Liu Q, Pu Z, Tang C, Asiri A M, Qusti A H, Al-Youbi A O, Sun X. N-Doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 36: 57–61

    Article  CAS  Google Scholar 

  13. Ning R, Ge C, Liu Q, Tian J, Asiri A M, Alamry K A, Li C, Sun X. Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78: 60–69

    Article  CAS  Google Scholar 

  14. Tian J, Ning R, Liu Q, Asiri A M, Al-Youbi A O, Sun X. Threedimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: Solution selfassembly construction and application as a highly efficient metalfree electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2014, 6(2): 1011–1017

    Article  CAS  Google Scholar 

  15. Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828

    Article  CAS  PubMed  Google Scholar 

  16. Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy & Environmental Science, 2014, 7 (11): 3574–3592

    Article  CAS  Google Scholar 

  17. Wang L, Yu P, Zhao L, Tian C, Zhao D, Zhou W, Yin J, Wang R, Fu H. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4(1): 5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbonsulphur cathode for lithium-sulphur batteries. Nature Materials, 2009, 8(6): 500–506

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Riduan S N. Functional porous organic polymers for heterogeneous catalysis. Chemical Society Reviews, 2012, 41(6): 2083–2094

    Article  CAS  PubMed  Google Scholar 

  20. Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications. Chemical Society Reviews, 2013, 42(2): 548–568

    Article  CAS  PubMed  Google Scholar 

  21. Su Y, Yao Z, Zhang F, Wang H, Mics Z, Cánovas E, Bonn M, Zhuang X, Feng X. Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Advanced Functional Materials, 2016, 26(32): 5893–5902

    Article  CAS  Google Scholar 

  22. Zhuang X, Gehrig D, Forler N, Liang H, Wagner M, Hansen M R, Laquai F, Zhang F, Feng X. Conjugated microporous polymers with dimensionality-controlled heterostructures for green energy devices. Advanced Materials, 2015, 27(25): 3789–3796

    Article  CAS  PubMed  Google Scholar 

  23. Zhao W, Han S, Zhuang X, Zhang F, Mai Y, Feng X. Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(46): 23352–23359

    Article  CAS  Google Scholar 

  24. Han S, Feng Y, Zhang F, Yang C, Yao Z, Zhao W, Qiu F, Yang L, Yao Y, Zhuang X, Feng X. Metal-phosphide-containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906

    Article  CAS  Google Scholar 

  25. He Y, Gehrig D, Zhang F, Lu C, Zhang C, Cai M, Wang Y, Laquai F, Zhuang X, Feng X. Highly efficient electrocatalysts for oxygen reduction reaction based on 1D ternary doped porous carbons derived from carbon nanotube directed conjugated microporous polymers. Advanced Functional Materials, 2016, 26(45): 8255–8265

    Article  CAS  Google Scholar 

  26. Yu J S, Kang S, Yoon S B, Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. Journal of the American Chemical Society, 2002, 124(32): 9382–9383

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332(6037): 1537–1541

    Article  CAS  PubMed  Google Scholar 

  28. Fechler N, Fellinger T P, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Advanced Materials, 2013, 25(1): 75–79

    Article  CAS  PubMed  Google Scholar 

  29. Deng X, Zhao B, Zhu L, Shao Z. Molten salt synthesis of nitrogendoped carbon with hierarchical pore structures for use as highperformance electrodes in supercapacitors. Carbon, 2015, 93: 48–58

    Article  CAS  Google Scholar 

  30. Liang H W, Zhuang X, BrμLler S, Feng X, MμLlen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5(1): 4973

    Article  CAS  PubMed  Google Scholar 

  31. Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Advanced Materials, 2016, 28(10): 1981–1987

    Article  CAS  PubMed  Google Scholar 

  32. Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726

    Article  CAS  Google Scholar 

  33. Xia K, Gao Q, Wu C, Song S, Ruan M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45(10): 1989–1996

    Article  CAS  Google Scholar 

  34. Debnath S, Bedi A, Zade S S. Thienopentathiepine: A sulfur containing fused heterocycle for conjugated systems and their electrochemical polymerization. Polymer Chemistry, 2015, 6(44): 7658–7665

    Article  CAS  Google Scholar 

  35. Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J, Xu H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Advanced Materials, 2017, 29(38): 1702428

    Article  CAS  Google Scholar 

  36. Sandel V, Freedman H. Tetraphenylcyclobutadiene derivatives. VI. An investigation of the intermediacy of tetraphenylcyclobutadiene. Journal of the American Chemical Society, 1968, 90(8): 2059–2069

    CAS  Google Scholar 

  37. Li T T T, Brubaker C H Jr. Catalytic oligomerization in the reaction of diphenylacetylene with chromium vapor. Inorganica Chimica Acta, 1982, 65: L113–L114

    Article  CAS  Google Scholar 

  38. Schipper D J, Moh L C H, MμLler P, Swager T M. Dithiolodithiole as a building block for conjugated materials. Angewandte Chemie International Edition, 2014, 53(23): 5847–5851

    Article  CAS  PubMed  Google Scholar 

  39. Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, MμLlen K, Feng X. Persulfurated coronene: A new generation of “sulflower”. Journal of the American Chemical Society, 2017, 139(6): 2168–2171

    Article  CAS  PubMed  Google Scholar 

  40. Silverstein M, Visoly-Fisher I. Plasma polymerized thiophene: Molecular structure and electrical properties. Polymer, 2002, 43(1): 11–20

    Article  CAS  Google Scholar 

  41. Vasquez M, Cruz G, Olayo M, Timoshina T, Morales J, Olayo R. Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer, 2006, 47(23): 7864–7870

    Article  CAS  Google Scholar 

  42. Kamat S V, Yadav J, Puri V, Puri R. Modification of the properties of polythiophene thin films by vapor chopping. Applied Surface Science, 2012, 258(19): 7567–7573

    Article  CAS  Google Scholar 

  43. Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polymer Degradation & Stability, 2015, 120: 392–401

    Article  CAS  Google Scholar 

  44. Miron C, Hulubei C, Sava I, Quade A, Steuer A, Weltmann K D, Kolb J. Polyimide film surface modification by nanosecond high voltage pulse driven electrical discharges in water. Plasma Processes and Polymers, 2015, 12(8): 734–735

    Article  CAS  Google Scholar 

  45. Sun D, Yang J, Yan X. Hierarchically porous and nitrogen, sulfurcodoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chemical Communications, 2015, 51(11): 2134–2137

    Article  CAS  PubMed  Google Scholar 

  46. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy & Environmental Science, 2015, 8(10): 2916–2921

    Article  CAS  Google Scholar 

  47. Yang S, Zhi L, Tang K, Feng X, Maier J, MμLlen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012, 22(17): 3634–3640

    Article  CAS  Google Scholar 

  48. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z, Exarhos G J, Liu J. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Advanced Materials, 2012, 24(9): 1176–1181

    Article  CAS  PubMed  Google Scholar 

  49. Kim J S, Hwang T H, Kim B G, Min J, Choi J W. A lithium-sulfur battery with a high areal energy density. Advanced Functional Materials, 2014, 24(34): 5359–5367

    Article  CAS  Google Scholar 

  50. Cao C, Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X, 0. Zhuang X, Su Y, Zhang Y, Zhang F, Wu D, Feng X. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5(6): 2057–2064

    Article  CAS  Google Scholar 

  51. Liu J, Yang T, Wang D, Lu G Q, Zhao D, Qiao S Z. Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4(1): 2798

    Article  CAS  Google Scholar 

  52. Lee M S, Park M, Kim H Y, Park S J. Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture. Scientific Reports, 2016, 6(1): 23224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013, 6(10): 2839–2855

    Article  CAS  Google Scholar 

  54. Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S. Compact-designed supercapacitors using freestanding single-walled carbon nanotube films. Energy & Environmental Science, 2011, 4(4): 1440–1446

    Article  CAS  Google Scholar 

  55. Niu Z, Zhou W, Chen X, Chen J, Xie S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Advanced Materials, 2015, 27(39): 6002–6008

    Article  CAS  PubMed  Google Scholar 

  56. Ran F, Zhang X, Liu Y, Shen K, Niu X, Tan Y, Kong L, Kang L, Xu C, Chen S. Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5(106): 87077–87083

    Article  CAS  Google Scholar 

  57. Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, MμLlen K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135

    Article  CAS  PubMed  Google Scholar 

  58. Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M, Forster M, Chassé T, Pichler T, Riedl T, Chen Y, Scherf U. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Advanced Materials, 2015, 27(42): 6714–6721

    Article  CAS  PubMed  Google Scholar 

  59. Chang J, Jin M, Yao F, Kim T H, Le V T, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Advanced Functional Materials, 2013, 23(40): 5074–5083

    Article  CAS  Google Scholar 

  60. Lei Z, Lu L, Zhao X. The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 2012, 5 (4): 6391–6399

    Article  CAS  Google Scholar 

  61. Sumboja A, Foo C Y, Wang X, Lee P S. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Advanced Materials, 2013, 25(20): 2809–2815

    Article  CAS  PubMed  Google Scholar 

  62. Nasini U B, Bairi V G, Ramasahayam S K, Bourdo S E, Viswanathan T, Shaikh A U. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. Journal of Power Sources, 2014, 250: 257–265

    Article  CAS  Google Scholar 

  63. Yuan K, Zhuang X, Fu H, Brunklaus G, Forster M, Chen Y, Feng X, Scherf U. Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angewandte Chemie International Edition, 2016, 55(24): 6858–6863

    Article  CAS  PubMed  Google Scholar 

  64. Zhu J, Sakaushi K, Clavel G, Shalom M, Antonietti M, Fellinger T P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 2015, 137(16): 5480–5485

    Article  CAS  PubMed  Google Scholar 

  65. Nam G, Park J, Kim S T, Shin D B, Park N, Kim Y, Lee J S, Cho J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters, 2014, 14(4): 1870–1876

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from NSFC for Excellent Young Scholars (51722304), NSFC (21720102002, 21574080 and 61306018), Shanghai Committee of Science and Technology (15JC1490500, 16JC1400703), Shanghai Pujiang Talent Programme (18PJ1406100), and Open Project Program of the State Key Laboratory of Supramolecular Structure and Materials (sklssm201732, Jilin University); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (2016-08, Jilin University); State Key Laboratory for Mechanical Behavior of Materials (20161803, Xi’an Jiaotong University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Hou, Fan Zhang or Silvia Paasch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, C., Bi, S. et al. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Front. Chem. Sci. Eng. 12, 346–357 (2018). https://doi.org/10.1007/s11705-018-1727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1727-6

Keywords

Navigation