Skip to main content
Log in

Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Catalytic steam gasification of fine coal char particles was carried out using a self-made laboratory reactor to determine the intrinsic kinetics and external diffusion under varying pressures (0.1–0.5 MPa) and superficial gas flow velocities (GFVs) of 13.8–68.8 cm∙s–1. In order to estimate the in-situ gas release rate at a low GFV, the transported effect of effluent gas on the temporal gasification rate pattern was simulated by the Fluent computation and verified experimentally. The external mass transfer coefficients (kmam) and the effectiveness factors were determined at lower GFVs, based on the intrinsic gasification rate obtained at a high GFV of 55.0 cm∙s–1. The kmam was found to be almost invariable in a wider carbon conversion of 0.2–0.7. The variations of kmam at a median carbon conversion with GFV, temperature and pressure were found to follow a modified Chilton-Colburn correlation: \(Sh = 0.311{\operatorname{Re} {2.83}}S{c^{\frac{1}{3}}}{(\frac{P}{{{P_0}}})^{ - 2.07}}\) (0.04<Re<0.19), where P is total pressure and P0 is atmospheric pressure. An intrinsic kinetics/external diffusion integrating model could well describe the gasification rate as a function of GFV, temperature and pressure over a whole gasification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cali G, Deiana P, Bassano C, Maggio E. Experimental activities on Sotacarbo 5MWth gasification demonstration plant. Fuel, 2017, 207: 671–679

    Article  CAS  Google Scholar 

  2. Chen Z, Lai D, Bai L, Tian Y, Gao S, Xu G, Tsutsumic A. Methanerich syngas production in an integrated fluidized bed by coupling pyrolysis and gasification of low-rank coal. Fuel Processing Technology, 2015, 140: 88–95

    Article  CAS  Google Scholar 

  3. Chen Z, Dun Q, Shi Y, Lai D, Zhou Y, Gao S, Xu G. High quality syngas production from catalytic coal gasification using disposable Ca(OH)2 catalyst. Chemical Engineering Journal, 2017, 316: 842–849

    Article  CAS  Google Scholar 

  4. Mims C A, Krajewski J J. Mechanism of methane formation in potassium catalyzed carbon gasification. Journal of Catalysis, 1986, 102(1): 140–150

    Article  CAS  Google Scholar 

  5. Wang J, Jiang M, Yao Y, Zhang Y, Cao J. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel, 2009, 88(9): 1572–1579

    Article  CAS  Google Scholar 

  6. Kopyscinski J, Mims C A, Hill J M. Formation of CH4 during K2CO3-catalyzed steam gasification of ash-free coal: Influence of catalyst loading, H2O/H2 ratio, and heating protocol. Energy & Fuels, 2015, 11(11): 6970–6977

    Article  Google Scholar 

  7. Malekshahian M, De Visscher A, Hill J M. A non-equimolar mass transfer model for carbon dioxide gasification studies by thermogravimetric analysis. Fuel Processing Technology, 2014, 124(124): 1–10

    Article  CAS  Google Scholar 

  8. Ollero P, Serrera A, Arjona R, Alcantarilla S. Diffusional effects in TGA gasification experiments for kinetic determination. Fuel, 2002, 81(15): 1989–2000

    Article  CAS  Google Scholar 

  9. Gómez-Barea A, Ollero P, Fernndez-Baco C. Diffusional effects in CO2 gasification experiments with single biomass char particles. 1. Experimental Investigation. Energy & Fuels, 2006, 20(5): 2202–2210

    Article  Google Scholar 

  10. Nowak B, Karlström O, Backman P, Brink A, Zevenhoven M, Voglsam S, Winter F, Hupa M. Mass transfer limitation in thermogravimetry of biomass gasification. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 183–192

    Article  CAS  Google Scholar 

  11. Li C, Zhao J, Fang Y, Wang Y. Effect of pressure on gasification reactivity of three Chinese coals with different ranks. Frontiers of Chemical Science and Engineering, 2010, 4(4): 385–393

    Article  CAS  Google Scholar 

  12. Mani T, Mahinpey N, Murugan P. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chemical Engineering Science, 2011, 66(1): 36–41

    Article  CAS  Google Scholar 

  13. Kramb J, DeMartini N, Perander M, Moilanen A, Konttinen J. Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO2. Fuel Processing Technology, 2016, 148: 50–59

    Article  CAS  Google Scholar 

  14. Tang J, Wang J. Catalytic steam gasification of coal char with alkali carbonates: A study on their synergic effects with calcium hydroxide. Fuel Processing Technology, 2016, 142: 34–41

    Article  CAS  Google Scholar 

  15. Wigmans T, Elfring R, Moulijn J A. On the mechanism of the potassium carbonate catalysed gasification of activated carbon: The influence of the catalyst concentration on the reactivity and selectivity at low steam pressures. Carbon, 1983, 21(1): 1–12

    Article  CAS  Google Scholar 

  16. Gomez A, Mahinpey N. Kinetic study of coal steam and CO2 gasification: A new method to reduce interparticle diffusion. Fuel, 2015, 148(15): 160–167

    Article  CAS  Google Scholar 

  17. Wu X, Tang J, Wang J. A new active site/intermediate kinetic model for K2CO3-catalyzed steam gasification of ash-free coal char. Fuel, 2016, 165(1): 59–67

    Article  CAS  Google Scholar 

  18. Formella K, Leonhardt P, Sulimma A, van Heek K H, Jüntgen H. Interaction of mineral matter in coal with potassium during gasification. Fuel, 1986, 65(10): 1470–1472

    Article  CAS  Google Scholar 

  19. Yang H, Kudo S, Norinaga K, Hayashi J. Steam-oxygen gasification of potassium-loaded lignite: Proof of concept of type IV gasification. Energy & Fuels, 2016, 30(3): 1616–1627

    Article  CAS  Google Scholar 

  20. Steibel M, Halama S, Geißler A, Spliethoff H. Gasification kinetics of a bituminous coal at elevated pressures: Entrained flow experiments and numerical simulations. Fuel, 2017, 196: 210–216

    Article  CAS  Google Scholar 

  21. Vascellaria M, Robertsb D G, Hlab S S, Harrisb D J, Hassea C. From laboratory-scale experiments to industrial-scale CFD simulations of entrained flow coal gasification. Fuel, 2015, 152: 58–73

    Article  Google Scholar 

  22. Kong X, Yuan Z, Ma L, Cheng J. Modeling and simulation of biomass air-steam gasification in a fluidized bed. Frontiers of Chemical Science and Engineering, 2008, 2(2): 209–213

    Article  Google Scholar 

  23. Wang Y, Yan L. CFD based combustion model for sewage sludge gasification in a fluidized bed. Frontiers of Chemical Science and Engineering, 2009, 3(2): 138–145

    Article  CAS  Google Scholar 

  24. Nguyen V T, Park W G. A free surface flow solver for complex three-dimensional water impact problems based on the VOF method. International Journal for Numerical Methods in Fluids, 2016, 82(1): 3–34

    Article  CAS  Google Scholar 

  25. Wang Y, Guo Q, Fu B, Xu J, Yu G, Wang F. Numerical analysis of the flow characteristics and heat and mass transfer of falling-water films in an industrial-scale dip tube of a WSCC in an OMB gasifier. Industrial & Engineering Chemistry Research, 2013, 52(26): 9295–9300

    Article  CAS  Google Scholar 

  26. Kim R, Hwang C, Chung H J. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure. Applied Energy, 2014, 129(129): 299–307

    Article  CAS  Google Scholar 

  27. Huo W, Zhou Z, Wang F, Wang Y, Yu G. Experimental study of pore diffusion effect on char gasification with CO2 and steam. Fuel, 2014, 131(3): 59–65

    Article  CAS  Google Scholar 

  28. Wang F, Zeng X, Wang Y, Yu J, Xu G. Characterization of coal char gasification with steam in a micro-fluidized bed reaction analyzer. Fuel Processing Technology, 2016, 141(1): 2–8

    Article  CAS  Google Scholar 

  29. Radović L R, Walker P L Jr, Jenkins R G. Importance of carbon active sites in the gasification of coal chars. Fuel, 1983, 62(7): 849–856

    Article  Google Scholar 

  30. Launder B, Spalding D. Lectures in Mathematical Models of Turbulence. London: Academic Press, 1972, 45(3): 143–143

    Google Scholar 

  31. Wigmans T, Cranenburgh H V, Elfring R, Moulijn J A. Mass transfer phenomena during potassium carbonate catalysed carbon steam gasification reactions in a microbalance setup. Carbon, 1983, 21(1): 23–31

    Article  CAS  Google Scholar 

  32. Richardson J, Szekely J. Mass transfer in a fluidized bed. Transactions of the Institutetution of Chemical Engineers, 1961, 39: 212–217

    CAS  Google Scholar 

  33. Mahinpey N, Gomez A. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science, 2016, 148: 14–31

    Article  CAS  Google Scholar 

  34. Ye D P, Agnew J B, Zhang D K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies. Fuel, 1998, 77(11): 1209–1219

    Article  CAS  Google Scholar 

  35. Kopyscinski J, Habibi R, Mims C A, Hill J M. K2CO3-catalyzed CO2 gasification of ash-free coal: Kinetic study. Energy & Fuels, 2013, 27(8): 4875–4883

    Article  CAS  Google Scholar 

  36. Aranda G, Grootjes A J, van der Meijden C M, van der Drift A, Gupta D F, Sonde R R, Poojari S, Mitra C B. Conversion of highash coal under steam and CO2 gasification conditions. Fuel Processing Technology, 2016, 141(1): 16–30

    Article  CAS  Google Scholar 

  37. Zhang Y, Ashizawa M, Kajitani S, Miura K. Proposal of a semiempirical kinetic model to reconcile with gasification reactivity profiles of biomass chars. Fuel, 2008, 87(4–5): 475–481

    Article  CAS  Google Scholar 

  38. Gavals G R. A random capillary model with application to char gasificaiton at chemically controlled rates. AIChE Journal. American Institute of Chemical Engineers, 1980, 26(4): 577–585

    Article  Google Scholar 

  39. Wu X, Wang J. K2CO3-catalyzed steam gasification of ash-free coal char in a pressurized and vertically blown reactor. Influence of pressure on gasification rate and gas composition. Fuel Processing Technology, 2017, 159: 9–18

    CAS  Google Scholar 

Download references

Acknowledgements

The research work is funded by the National Natural Science Foundation of China (Grand No. 21376080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, J. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions. Front. Chem. Sci. Eng. 13, 415–426 (2019). https://doi.org/10.1007/s11705-018-1725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1725-8

Keywords

Navigation