Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review

Abstract

Recently, more and more attention is paid on applications of molten chlorides in concentrated solar power (CSP) plants as high-temperature thermal energy storage (TES) and heat transfer fluid (HTF) materials due to their high thermal stability limits and low prices, compared to the commercial TES/HTF materials in CSP-nitrate salt mixtures. A higher TES/HTF operating temperature leads to higher efficiency of thermal to electrical energy conversion of the power block in CSP, however causes additional challenges, particularly increased corrosiveness of metallic alloys used as containers and structural materials. Thus, it is essential to study corrosion behaviors and mechanisms of metallic alloys in molten chlorides at operating temperatures (500–800 °C) for realizing the commercial application of molten chlorides in CSP. The results of studies on hot corrosion of metallic alloys in molten chlorides are reviewed to understand their corrosion behaviors and mechanisms under various conditions (e.g., temperature, atmosphere). Emphasis has also been given on salt purification to reduce corrosive impurities in molten chlorides and development of electrochemical techniques to in-situ monitor corrosive impurities in molten chlorides, in order to efficiently control corrosion rates of metallic alloys in molten chlorides to meet the requirements of industrial applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Minh N Q. Extraction of metals by molten salt electrolysis: Chemical fundamentals and design factors. Journal of Metals, 1985, 37(1): 28–33

    Google Scholar 

  2. 2.

    Fray D J. Emerging molten salt technologies for metals production. Journal of the Minerals Metals & Materials Society, 2001, 53(10): 26–31

    Article  CAS  Google Scholar 

  3. 3.

    Wulandari W, Brooks G A, Rhamdhani M A, Monaghan B J. Magnesium: Current and alternative production routes. In: Proceedings of Chemeca 2010: Engineering at the Edge. Barton: Engineers Australia, 2010, 347–357

    Google Scholar 

  4. 4.

    Mehos M, Turchi C, Vidal J, Wagner M, Ma Z, Ho C, Kolb W, Andraka C, Kruizenga A. Concentrating Solar Power Gen3 Demonstration Roadmap. National Renewable Energy Laboratory Technical Report NREL/TP-5500-67464. 2017

    Google Scholar 

  5. 5.

    Kuravi S, Trahan J, Goswami D Y, Rahman M M, Stefanakos E K. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science, 2013, 39(4): 285–319

    Article  Google Scholar 

  6. 6.

    Zervos A, ed. Renewables 2016: Global Status Report, 2016. Paris: REN21 Secretariat, 2016, 67–69

    Google Scholar 

  7. 7.

    Vignarooban K, Xu X, Arvay A, Kannan H K. Heat transfer fluids for concentrating solar power systems—a review. Applied Energy, 2015, 146: 383–396

    Article  CAS  Google Scholar 

  8. 8.

    Lantelme F, Groult H, eds. Molten Salts Chemistry: From Lab to Applications. Amsterdam: Elsevier, 2013, 415–438

    Google Scholar 

  9. 9.

    Li Y, Xu X, Wang X, Li P, Hao Q, Xiao B. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Solar Energy, 2017, 152: 57–79

    Article  CAS  Google Scholar 

  10. 10.

    Tian Y, Zhao C Y. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013, 104: 538–553

    Article  CAS  Google Scholar 

  11. 11.

    Kruizenga A M. Corrosion Mechanisms in Chloride and Carbonate Salts. SANDIA Report SAND2012-7594. 2012

    Google Scholar 

  12. 12.

    Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes. Metal Science and Heat Treatment, 1985, 27 (3): 184–188

    Article  Google Scholar 

  13. 13.

    Sequeira C A C. High temperature corrosion in molten salts. Molten Salt Forum, 2003, 7, 117–170

    Google Scholar 

  14. 14.

    Lai G Y, ed. High-Temperature Corrosion and Materials Applications. Ohio: ASM International, 2007, 409–421

    Google Scholar 

  15. 15.

    Patel N S, Pavik V, Boca M. High-temperature corrosion behavior of superalloys in molten salts—a review. Critical Reviews in Solid State and Material Sciences, 2017, 42(1): 83–97

    Article  CAS  Google Scholar 

  16. 16.

    Tomkins R P T, Bansal N P. Gases in molten salts, a volume in IUPAC solubility data series. Oxford: Pergamon Press, 1991, Volume 45/46, 61, 114–176, 220–245, 325–339, 353–357

    Google Scholar 

  17. 17.

    Li Y S, Spiegel M. Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2-KCl melt at 400–450 °C. Corrosion Science, 2004, 46(8): 2009–2023

    Article  CAS  Google Scholar 

  18. 18.

    Maksoud L, Bauer T. Experimental investigation of chloride molten salts for thermal energy storage applications. In: Proceedings of 10th International Conference on Molten Salt Chemistry and Technology, Shenyang, China, 2015, 273–280

    Google Scholar 

  19. 19.

    Kipouros G J, Sadoway D R. A thermochemical analysis of the production of anhydrous MgCl2. Journal of Light Metals, 2001, 1 (2): 111–117

    Article  Google Scholar 

  20. 20.

    Maricle D L, Hume D N. A new method for preparing hydroxide—-free alkali chloride melts. Journal of the Electrochemical Society, 1960, 107(4): 354–356

    Article  CAS  Google Scholar 

  21. 21.

    Skar R A. Chemical and electrochemical characterisation of oxide/hydroxide impurities in the electrolyte for magnesium production. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology (NTNU), 2001, 26

  22. 22.

    Gussone J. Schmelzflusselektroytische Abscheidung von Titan auf Vertärkungsfasern zur Herstellung von Titanmatrixverbundwerkstoffen. Dissertation for the Doctoral Degree. Aachen: RWTH Aachen University, 2012, 56–80 (in German)

    Google Scholar 

  23. 23.

    Ding W, Bonk A, Gussone J, Bauer T. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. Journal of Energy Storage, 2018, 15: 408–414

    Article  Google Scholar 

  24. 24.

    Ding W, Bonk A, Gussone J, Bauer T. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage. Energy Procedia, 2017, 135: 82–91

    Article  CAS  Google Scholar 

  25. 25.

    Ding W, Bonk A, Gussone J, Bauer T. Electrochemical method for monitoring corrosive impurities in molten MgCl2/KCl/NaCl salts for thermal energy storage. In: Proceedings of 11th International Renewable Energy Storage Conference (IRES 2017), Düsseldorf Germany, 2017, Paper-Nr: IRES2017-141

    Google Scholar 

  26. 26.

    Gaune-Escard M, ed. Molten Salts: From Fundamentals To Applications. NATO Science Series (Series II: Mathematics, Physics, and Chemistry), volume 52. Dordrecht: Springer, 2002, 283–285

    Google Scholar 

  27. 27.

    Mohamedi M, Borresen B, Haarberg G M, Tunold R. Anodic behavior of carbon electrodes in CaO-CaCl2 melts at 1123 K. Journal of the Electrochemical Society, 1999, 146(4): 1472–1477

    Article  CAS  Google Scholar 

  28. 28.

    Brookes H C. Voltammetric investigations of CaCI2:KCI melts at 700 °C. Journal of the Electrochemical Society, 1988, 135(2): 373–377

    Article  CAS  Google Scholar 

  29. 29.

    Liu B, Wei X, Wang W, Lu J, Ding J. Corrosion behavior of Nibased alloys in molten NaCl-CaCl2-MgCl2 eutectic salt for concentrating solar power. Solar Energy Materials and Solar Cells, 2017, 170: 77–86

    Article  CAS  Google Scholar 

  30. 30.

    Vignarooban K, Pugazhendhi P, Tucker C, Gervasio D, Kannan A M. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Solar Energy, 2014, 103: 62–69

    Article  CAS  Google Scholar 

  31. 31.

    Vignarooban K, Xu X, Wang K, Molina E E, Li P, Gervasio D, Kannan A M. Vapor pressure and corrosivity of ternary metalchloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Applied Energy, 2015, 159: 206–213

    Article  CAS  Google Scholar 

  32. 32.

    Gomez-Vidal J C, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Solar Energy Materials and Solar Cells, 2016, 157: 234–244

    Article  CAS  Google Scholar 

  33. 33.

    Wang JW, Zhang C Z, Li Z H, Zhou H X, He J X, Yu J C. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2 in atmosphere. Solar Energy Materials and Solar Cells, 2017, 164: 146–155

    Article  CAS  Google Scholar 

  34. 34.

    Abramov A V, Polovov I B, Volkvich V A, Rebrin O I, Denisov E I, Griffiths T R. Corrosion of austenitic steels and their components in vanadium-containing chloride melts. ECS Transactions, 2012, 50 (11): 685–698

    Article  CAS  Google Scholar 

  35. 35.

    Gaune-Escard M, Haarberg G M, eds. Molten Salts Chemistry and Technology. Chichester: John Wiley & Sons, Ltd., 2014, 427–448

    Google Scholar 

  36. 36.

    Gomez-Vidal J C, Fernandez A G, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. II: Pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233

    CAS  Google Scholar 

  37. 37.

    Wang JW, Zhou H X, Zhang C Z, Liu WN, Zhao B Y. Influence of MgCl2 content on corrosion behavior of GH1140 in molten NaCl-MgCl2 as thermal storage medium. Solar Energy Materials and Solar Cells, 2018, 179: 194–201

    Article  CAS  Google Scholar 

  38. 38.

    Hamer W J, Malmberg M S, Rubin B. Theoretical electromotive forces for cells containing a single solid or molten chloride electrolyte. Journal of the Electrochemical Society, 1956, 103(1): 8–16

    Article  CAS  Google Scholar 

  39. 39.

    Plambeck J A. Electromotive force series in molten salts. Journal of Chemical & Engineering Data, 1967, 12(1): 77–82

    Article  CAS  Google Scholar 

  40. 40.

    Indacochea J E, Smith J L, Litko K R, Karell E J, Rarez A G. Hightemperature oxidation and corrosion of structural materials in molten chlorides. Oxidation of Metals, 2001, 55(1–2): 1–16

    Article  CAS  Google Scholar 

  41. 41.

    Indacochea J E, Smith J L, Litko K R, Karell E J. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. Journal of Materials Research, 1999, 14(5): 1990–1995

    Article  CAS  Google Scholar 

  42. 42.

    Garcia-Diaz B L, Olson L, Martinez-Rodriguez M, Fuentes R, Colon-Mercado H, Gray J. High temperature electrochemical engineering and clean energy systems. Journal of the South Carolina Academy of Science, 2016, 14(1): 11–14

    Google Scholar 

  43. 43.

    Gomez-Vidal J C, Fernandez A G, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests. Solar Energy Materials and Solar Cells, 2017, 166: 222–233

    CAS  Google Scholar 

  44. 44.

    Gomez-Vidal J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. Nature Partner Journal Materials Degradation, 2017, 7: 1–9

    Google Scholar 

  45. 45.

    Azarbayjani K, Rizvi G, Foroutan F. Evaluating effects of immersion tests in molten copper chloride salts on corrosion resistant coatings. International Journal of Hydrogen Energy, 2016, 41(19): 8394–8400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been performed within the DLRDAAD fellowship programme, which is funded by German Academic Exchange Service (DAAD) and German Aerospace Center (DLR).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenjin Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Bonk, A. & Bauer, T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Front. Chem. Sci. Eng. 12, 564–576 (2018). https://doi.org/10.1007/s11705-018-1720-0

Download citation

Keywords

  • corrosion mechanisms
  • impurities
  • metallic corrosion
  • salt purification
  • electrochemical techniques