Advertisement

Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst

  • Ignacio Jorge Castellanos-Beltran
  • Gnouyaro Palla Assima
  • Jean-Michel Lavoie
Research Article
  • 52 Downloads

Abstract

The methanol-to-olefin (MTO) reaction was investigated in a bench-scale, fixed-bed reactor using an extruded catalyst composed of a commercial SAPO-34 (65 weight percentage, wt-%) embedded in an amorphous SiO2 matrix (35 wt-%). The texture properties, acidity and crystal structure of the pure SAPO-34 and its extruded form (E-SAPO-34) were analyzed and the results indicated that the extrusion step did not affect the properties of the catalyst. Subsequently, E-SAPO-34 was tested in a temperature range between 300 and 500 °C, using an aqueous methanol mixture (80 wt-% water content) fed at a weight hour space velocity (WHSV) of 1.21 h‒1. At 300 °C, a low conversion was observed combined with the catalyst deactivation, which was ascribed to oligomerization and condensation reactions. The coke analysis showed the presence of diamandoid hydrocarbons, which are known to be inactive molecules in the MTO process. At higher temperatures, a quasi-steady state was reached during a 6 h reaction where the optimal temperature was identified at 450 °C, which incidentally led to the lowest coke deposition combined with the highest H/C ratio. Above 450 °C, surges of ethylene and methane were associated to a combination of H-transfer and protolytic cracking reactions. Finally, the present work underscored the convenience of the extrusion technique for testing catalysts at simulated scale-up conditions.

Keywords

MTO SAPO-34 temperature extrusion coke light alkanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the funders of the Industrial Research Chair on Cellulosic Ethanol and Biocommodities at the University of Sherbrooke for their support. The authors would also like to thank MITACS (Grant number ITO3931) for supporting Ignacio Castellanos- Beltran and Gnouyaro Palla Assima’s salaries during the project.

References

  1. 1.
    Bellussi G, Pollesel P. Industrial applications of zeolite catalysis: Production and uses of light olefins. Studies in Surface Science and Catalysis, 2005, 158(2): 1201–1212CrossRefGoogle Scholar
  2. 2.
    Amghizar I, Vandewalle L A, Van Geem K M, Marin G B. New trends in olefin production. Engineering, 2017, 3(2): 171–178CrossRefGoogle Scholar
  3. 3.
    Mokrani T, Scurrell M. Gas conversion to liquid fuels and chemicals: The methanol route—catalysis and processes development. Catalysis Reviews, 2009, 51(1): 1–145CrossRefGoogle Scholar
  4. 4.
    Plotkin J S. The changing dynamics of olefin supply/demand. Catalysis Today, 2005, 106(1): 10–14Google Scholar
  5. 5.
    Chen X, Yan Y. Study on the technology of thermal cracking of paraffin to alpha olefins. Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 106–112CrossRefGoogle Scholar
  6. 6.
    Stöcker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1–2): 3–48CrossRefGoogle Scholar
  7. 7.
    Weissermel K, Arpe H J. Industrial Organic Chemistry. New York: VCH Publishers Inc., 1997, 13–55CrossRefGoogle Scholar
  8. 8.
    Keil F J. Methanol-to-hydrocarbons: Process technology. Microporous and Mesoporous Materials, 1999, 29(1–2): 49–66CrossRefGoogle Scholar
  9. 9.
    Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/ Hydro MTO process. Catalysis Today, 2005, 106(1–4): 103–107CrossRefGoogle Scholar
  10. 10.
    Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis, 2015, 5(3): 1922–1938CrossRefGoogle Scholar
  11. 11.
    Inui T, Phatanasri S, Matsuda H. Highly selective synthesis of ethene from methanol on a novel nickel-silicoaluminophosphate catalyst. Journal of the Chemical Society. Chemical Communications, 1990, 20(1): 205–206CrossRefGoogle Scholar
  12. 12.
    Inui T. European Patent, 0418142B1, 1990–09-11Google Scholar
  13. 13.
    Wilson S, Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 1999, 26(1–2): 117–126CrossRefGoogle Scholar
  14. 14.
    Chen D, Moljord K, Holmen A. A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 2012, 164(1): 239–250CrossRefGoogle Scholar
  15. 15.
    Wu X, Anthony R G G. Effect of feed composition on methanol conversion to light olefins over SAPO-34. Applied Catalysis A, General, 2001, 218(1–2): 241–250CrossRefGoogle Scholar
  16. 16.
    Wolthuizen J P, Van den Berg J P, Van Hooff J H C. Low temperature reactions of olefins on partially hydrated zeolite HZSM-5. Studies in Surface Science and Catalysis, 1980, 5(1): 85–92CrossRefGoogle Scholar
  17. 17.
    Müller S, Liu Y, Kirchberger F M, Tonigold M, Sanchez-Sanchez M, Lercher J A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. Journal of the American Chemical Society, 2016, 138(49): 15994–16003CrossRefGoogle Scholar
  18. 18.
    Chen D, Rebo H P, Grønvold A, Moljord K, Holmen A. Methanol conversion to light olefins over SAPO-34: Kinetic modeling of coke formation. Microporous and Mesoporous Materials, 2000, 35–36: 121–135CrossRefGoogle Scholar
  19. 19.
    Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34. Journal of Catalysis, 1996, 161(1): 304–309CrossRefGoogle Scholar
  20. 20.
    Olsbye U, Bjørgen M, Svelle S, Lillerud K P, Kolboe S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catalysis Today, 2005, 106(1–4): 108–111CrossRefGoogle Scholar
  21. 21.
    Haw J F, Song W, Marcus D M, Nicholas J B. The mechanism of methanol to hydrocarbon catalysis. Accounts of Chemical Research, 2003, 36(5): 317–326CrossRefGoogle Scholar
  22. 22.
    Michels N L, Mitchell S, Pérez-Ramírez J. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-tohydrocarbons. ACS Catalysis, 2014, 4(8): 2409–2417CrossRefGoogle Scholar
  23. 23.
    Freiding J, Patcas F C, Kraushaar-Czarnetzki B. Extrusion of zeolites: Properties of catalysts with a novel aluminium phosphate sintermatrix. Applied Catalysis A, General, 2007, 328(2): 210–218CrossRefGoogle Scholar
  24. 24.
    Cui Y, Zhang Q, He J, Wang Y, Wei F. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology, 2013, 11(4): 468–474CrossRefGoogle Scholar
  25. 25.
    Schmidt F, Paasch S, Brunner E, Kaskel S. Carbon-templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO reaction. Microporous and Mesoporous Materials, 2012, 164(1): 214–221CrossRefGoogle Scholar
  26. 26.
    Yang S T, Kim J Y, Chae H J, Kim M, Jeong S Y, Ahn W S. Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Materials Research Bulletin, 2012, 47(11): 3888–3892CrossRefGoogle Scholar
  27. 27.
    Sun Q, Ma Y, Wang N, Li X, Xi D, Xu J, Deng F, Yoon K B, Oleynikov P, Terasaki O, Yu J. High performance nanosheet-like silicoaluminophosphate molecular sieves: Synthesis, 3D EDT structural analysis and MTO catalytic studies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(42): 17828–17839CrossRefGoogle Scholar
  28. 28.
    Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(10): 5608–5616CrossRefGoogle Scholar
  29. 29.
    Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catalysis Today, 1998, 41(1–3): 207–219CrossRefGoogle Scholar
  30. 30.
    Al-Dughaither A S, De Lasa H. Neat dimethyl ether conversion to olefins (DTO) over HZSM-5: Effect of SiO2/Al2O3 on porosity, surface chemistry, and reactivity. Fuel, 2014, 138(1): 52–64CrossRefGoogle Scholar
  31. 31.
    Magnoux P, Roger P, Canaff C, Fouche V, Gnep N S, Guisnet M. New technique for the characterization of carbonaceous compounds responsible for zeolite deactivation. In: Proceedings of the 4th International Symposium. Amsterdam: Elsevier, 1987, 317–330Google Scholar
  32. 32.
    Gayubo A G, Aguayo A T, Sánchez del Campo A E, Tarrío A M, Bilbao J. Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst. Industrial & Engineering Chemistry Research, 2000, 39(2): 292–300CrossRefGoogle Scholar
  33. 33.
    Prakash A M, Unnikrishnan S. Synthesis of SAPO-34: High silicon incorporation in the presence of morpholine as template. Journal of the Chemical Society, Faraday Transactions, 1994, 90(15): 2291–2296CrossRefGoogle Scholar
  34. 34.
    Mores D, Stavitski E, Kox M H F F, Kornatowski J, Olsbye U, Weckhuysen B M. Space-and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(36): 11320–11327Google Scholar
  35. 35.
    Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjørgen M, Weckhuysen B M, Olsbye U. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 2009, 264(1): 77–87CrossRefGoogle Scholar
  36. 36.
    Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2012, 3(1): 18–31CrossRefGoogle Scholar
  37. 37.
    Hutchings G J, Hunter R. Hydrocarbon formation from methanol and dimethyl ether: A review of the experimental observations concerning the mechanism of formation of the primary products. Catalysis Today, 1990, 6(3): 279–306CrossRefGoogle Scholar
  38. 38.
    Salehirad F, Anderson M W. Solid-state 13C MAS NMR study of methanol-to-hydrocarbon chemistry over H-SAPO-34. Journal of Catalysis, 1996, 314(2): 301–314CrossRefGoogle Scholar
  39. 39.
    Wei Z, Chen Y, Li J, Wang P, Jing B, He Y, Dong M, Jiao H, Qin Z, Wang J, Fan W. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. Catalysis Science & Technology, 2016, 6(14): 5526–5533CrossRefGoogle Scholar
  40. 40.
    Guisnet M, Magnoux P. Organic chemistry of coke formation. Applied Catalysis A, General, 2001, 212(1–2): 83–96CrossRefGoogle Scholar
  41. 41.
    Sanati M, Hörnell C, Järäs S G. The oligomerization of alkenes by heterogeneous catalysts. Catalysis, 1999, 14(7): 236–287Google Scholar
  42. 42.
    Kotrel S, Knözinger H, Gates B C. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 2000, 35–36: 11–20CrossRefGoogle Scholar
  43. 43.
    Elliott D C. Relation of reaction, time and temperature to chemical composition of pyrolysis oils. In: Soltes E J, Milne T A, eds. Pyrolysis Oils from Biomass, 1988, Chapter 6: 55–65Google Scholar
  44. 44.
    Wei Y, Li J, Yuan C, Xu S, Zhou Y, Chen J, Wang Q, Zhang Q, Liu Z. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications, 2012, 48(1): 3082–3084CrossRefGoogle Scholar
  45. 45.
    Magnoux P, Rabeharitsara A, Cerqueira H S. Influence of reaction temperature and crystallite size on HBEA zeolite deactivation by coke. Applied Catalysis A, General, 2006, 304(1): 142–151CrossRefGoogle Scholar
  46. 46.
    Vedrine J C, Dejaifve P, Garbowski E D, Derouane E G. Aromatics formation from methanol and light olefins conversions on H-ZSM-5 zeolite: Mechanism and intermediate species. Studies in Surface Science and Catalysis, 1980, 5(1): 29–37CrossRefGoogle Scholar
  47. 47.
    Luo M, Zang H, Hu B, Wang B, Mao G. Evolution of confined species and their effects on catalyst deactivation and olefin selectivity in SAPO-34 catalyzed MTO process. RSC Advances, 2016, 6(1): 17651–17658CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ignacio Jorge Castellanos-Beltran
    • 1
  • Gnouyaro Palla Assima
    • 1
  • Jean-Michel Lavoie
    • 1
  1. 1.Chaire de Recherche Industrielle sur l’Éthanol Cellulosique et les Biocommodities (CRIEC-B)Université de SherbrookeSherbrookeCanada

Personalised recommendations