Abstract
High energy density fuels are critical for hypersonic aerospace propulsion but suffer from difficulties of ignition delay and incomplete combustion. This research reports aluminum nanoparticles (Al NPs) assisted ignition and combustion of high energy density JP-10 fuel. Al NPs with a size of 16 nm were fabricated through a mild and simple method by decomposing AlH3·Et2O with the addition of a surfactant ligand. The uniform size distribution, nanoscaled size and surface ligand make Al NPs stably suspend in JP-10, with 80% NPs being dispersed in the liquid fuel after six months. A shock tube test shows that the presence of 1 wt-% Al NPs can significantly shorten ignition delay time at temperature of 1500 to 1750 K, promote the combustion, and enhance energy release of JP-10. This work demonstrates the potential of Al NPs as ignition and combustion additive for high energy density fuel in hypersonic applications.

This is a preview of subscription content, access via your institution.
References
Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Recent developments in high-energy density liquid hydrocarbon fuels. Energy & Fuels, 1999, 13(3): 641–649
Keshavarz M H, Monjezi K H, Esmailpour K, Zamani M. Performance assessment of some isomers of saturated polycyclic hydrocarbons for use as jet fuel. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 309–314
Sibi M G, Singh B, Kumar R, Pendem C, Sinha A K. Single-step catalytic liquid-phase hydroconversion of DCPD into high energy density fuel exo-THDCPD. Green Chemistry, 2012, 14(4): 976–983
Wang L, Zou J-J, Zhang X, Wang L. Isomerization of tetrahydrodicyclopentadiene using ionic liquid: Green alternative for jet propellant-10 and adamantine. Fuel, 2012, 91(1): 164–169
Huang M Y, Wu J C, Shieu F S, Lin J J. Isomerization of endotetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts. Journal of Molecular Catalysis A Chemical, 2010, 315(1): 69–75
Zou J-J, Xiong Z, Zhang X, Liu G, Wang L, Mi Z. Kinetics of tricyclopentadiene hydrogenation over Pd-B/γ-Al2O3 amorphous catalyst. Industrial & Engineering Chemistry Research, 2007, 46 (13): 4415–4420
Wang L, Zou J-J, Zhang X, Wang L. Rearrangement of tetrahydrotricyclopentadiene using acidic ionic liquid: Synthesis of diamondoid fuel. Energy & Fuels, 2011, 25(4): 1342–1347
Zou J-J, Zhang X, Kong J, Wang L. Hydrogenation of dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4. Fuel, 2008, 87(17): 3655–3659
Zou J-J, Xiong Z, Wang L, Zhang X, Mi Z. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. Journal of Molecular Catalysis A Chemical, 2007, 271(1-2): 209–215
E X-T-F, Zhang Y, Zou J-J, Wang L, Zhang X. Oleylamineprotected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312–12318
E X-T-F, Zhang Y, Zou J-J, Zhang X, Wang L. Shape evolution in Brust-Schiffrin synthesis of Au nanoparticles. Materials Letters, 2014, 118(3): 196–199
Van Devener B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy & Fuels, 2006, 20(5): 1886–1894
Shimizu T, Abid A D, Poskrebyshev G, Wang H, Nabity J, Engel J, Yu J, Wickham D, Van Devener B, Anderson S L, Williams S. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combustion and Flame, 2010, 157(3): 421–435
Van Devener B, Anderson S L, Shimizu T,Wang H, Nabity J, Engel J, Yu J, Wickham D, Williams S. In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition. Journal of Physical Chemistry C, 2015, 80033(80138): 20632–20639
Guo Y, Yang Y, Fang W, Hu S. Resorcinarene-encapsulated Ni-B nano-amorphous alloys for quasi-homogeneous catalytic cracking of JP-10. Applied Catalysis A, General, 2014, 469(3): 213–220
E X-T-F, Pan L, Wang F, Wang L, Zhang X, Zou J-J. Alnanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745
Allen C, Mittal G, Sung C J, Toulson E, Lee T. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proceedings of the Combustion Institute, 2011, 33(2): 3367–3374
Starik A M, Kuleshov P S, Sharipov A S, Titova N S. Kinetics of ignition and combustion in the Al-CH4-O2 System. Energy & Fuels, 2014, 28(10): 6579–6588
Smirnov V V, Kostritsa S A, Kobtsev V D, Titova N S, Starik A M. Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles. Combustion and Flame, 2015, 162(10): 3554–3561
Haber J A, Buhro W E. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. Journal of the American Chemical Society, 1998, 120 (42): 10847–10855
Jouet R J, Warren A D, Rosenberg D M, Bellitto V J, Park K, Zachariah M R. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chemistry of Materials, 2005, 800(17): 2987–2996
Jouet R J, Carney J R, Granholm R H, Sandusky H W, Warren A D. Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites. Materials Science and Technology, 2006, 22(4): 422–429
Foley T J, Johnson C E, Higa K T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chemistry of Materials, 2005, 17(16): 4086–4091
Fernando K A S, SmithMJ, Harruff B A, LewisWK, Guliants E A, Bunker C E. Sonochemically assisted thermal decomposition of alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. Journal of Physical Chemistry C, 2009, 113(2): 500–503
Xu S, Liao Q. Shock tube study on auto-ignition delay of kerosene aerosol and its cracked mixture. Procedia Engineering, 2015, 99(1): 338–343
Goulet P J G, Lennox R B. New insights into Brust-Schiffrin metal nanoparticle synthesis. Journal of the American Chemical Society, 2010, 132(28): 9582–9584
Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
Lewis W K, Rosenberger A T, Gord J R, Crouse C A, Harruff B A, Shiral Fernando K A, Smith M J, Phelps D K, Spowart J E, Guliants E A, et al. Multispectroscopic (FTIR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. Journal of Physical Chemistry C, 2010, 114(14): 6377–6380
Bournel F, Laffon C, Parent P, Tourillon G. Adsorption of acrylic acid on aluminium at 300 K: A multi-spectroscopic study. Surface Science, 1996, 352-354(95): 228–231
Lee H M, Kim Y J. Preparation of size-controlled fine Al particles for application to rear electrode of Si solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3352–3358
Hammerstroem D W, Burgers M A, Chung S W, Guliants E A, Bunker C E, Wentz K M, Hayes S E, Buckner S W, Jelliss P A. Aluminum nanoparticles capped by polymerization of alkylsubstituted epoxides: Ratio-dependent stability and particle size. Inorganic Chemistry, 2011, 50(11): 5054–5059
Gan Y, Qiao L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combustion and Flame, 2011, 158(2): 354–368
Zhao Y, Yi H, Jia F, Li H, Peng C, Song S. A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water. Powder Technology, 2017, 306(7): 74–79
Davidson D F, Horning D C, Herbon J T, Hanson R K. Shock tube measurements of JP-10 ignition. Proceedings of the Combustion Institute, 2000, 28(2): 1687–1692
Li Y, Kalia R K, Nakano A, Vashishta P. Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations. Journal of Applied Physics, 2013, 114(13): 134312–134322
Levitas V I. Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combustion and Flame, 2009, 156(2): 543–546
Acknowledgments
The authors appreciate the supports from the National Natural Science Foundation of China (Grant Nos. U1462119 and 21476168).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
E, XTF., Zhang, L., Wang, F. et al. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels. Front. Chem. Sci. Eng. 12, 358–366 (2018). https://doi.org/10.1007/s11705-018-1702-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11705-018-1702-2
Keywords
- aluminum nanoparticles
- combustion
- ignition
- shock tube test
- high energy density fuel