Frontiers of Chemical Science and Engineering

, Volume 12, Issue 3, pp 358–366 | Cite as

Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels

  • Xiu-Tian-Feng E
  • Lei Zhang
  • Fang Wang
  • Xiangwen Zhang
  • Ji-Jun Zou
Research Article


High energy density fuels are critical for hypersonic aerospace propulsion but suffer from difficulties of ignition delay and incomplete combustion. This research reports aluminum nanoparticles (Al NPs) assisted ignition and combustion of high energy density JP-10 fuel. Al NPs with a size of 16 nm were fabricated through a mild and simple method by decomposing AlH3·Et2O with the addition of a surfactant ligand. The uniform size distribution, nanoscaled size and surface ligand make Al NPs stably suspend in JP-10, with 80% NPs being dispersed in the liquid fuel after six months. A shock tube test shows that the presence of 1 wt-% Al NPs can significantly shorten ignition delay time at temperature of 1500 to 1750 K, promote the combustion, and enhance energy release of JP-10. This work demonstrates the potential of Al NPs as ignition and combustion additive for high energy density fuel in hypersonic applications.


aluminum nanoparticles combustion ignition shock tube test high energy density fuel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors appreciate the supports from the National Natural Science Foundation of China (Grant Nos. U1462119 and 21476168).


  1. 1.
    Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Recent developments in high-energy density liquid hydrocarbon fuels. Energy & Fuels, 1999, 13(3): 641–649CrossRefGoogle Scholar
  2. 2.
    Keshavarz M H, Monjezi K H, Esmailpour K, Zamani M. Performance assessment of some isomers of saturated polycyclic hydrocarbons for use as jet fuel. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 309–314CrossRefGoogle Scholar
  3. 3.
    Sibi M G, Singh B, Kumar R, Pendem C, Sinha A K. Single-step catalytic liquid-phase hydroconversion of DCPD into high energy density fuel exo-THDCPD. Green Chemistry, 2012, 14(4): 976–983CrossRefGoogle Scholar
  4. 4.
    Wang L, Zou J-J, Zhang X, Wang L. Isomerization of tetrahydrodicyclopentadiene using ionic liquid: Green alternative for jet propellant-10 and adamantine. Fuel, 2012, 91(1): 164–169CrossRefGoogle Scholar
  5. 5.
    Huang M Y, Wu J C, Shieu F S, Lin J J. Isomerization of endotetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts. Journal of Molecular Catalysis A Chemical, 2010, 315(1): 69–75CrossRefGoogle Scholar
  6. 6.
    Zou J-J, Xiong Z, Zhang X, Liu G, Wang L, Mi Z. Kinetics of tricyclopentadiene hydrogenation over Pd-B/γ-Al2O3 amorphous catalyst. Industrial & Engineering Chemistry Research, 2007, 46 (13): 4415–4420CrossRefGoogle Scholar
  7. 7.
    Wang L, Zou J-J, Zhang X, Wang L. Rearrangement of tetrahydrotricyclopentadiene using acidic ionic liquid: Synthesis of diamondoid fuel. Energy & Fuels, 2011, 25(4): 1342–1347CrossRefGoogle Scholar
  8. 8.
    Zou J-J, Zhang X, Kong J, Wang L. Hydrogenation of dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4. Fuel, 2008, 87(17): 3655–3659CrossRefGoogle Scholar
  9. 9.
    Zou J-J, Xiong Z, Wang L, Zhang X, Mi Z. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. Journal of Molecular Catalysis A Chemical, 2007, 271(1-2): 209–215CrossRefGoogle Scholar
  10. 10.
    E X-T-F, Zhang Y, Zou J-J, Wang L, Zhang X. Oleylamineprotected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312–12318CrossRefGoogle Scholar
  11. 11.
    E X-T-F, Zhang Y, Zou J-J, Zhang X, Wang L. Shape evolution in Brust-Schiffrin synthesis of Au nanoparticles. Materials Letters, 2014, 118(3): 196–199CrossRefGoogle Scholar
  12. 12.
    Van Devener B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy & Fuels, 2006, 20(5): 1886–1894CrossRefGoogle Scholar
  13. 13.
    Shimizu T, Abid A D, Poskrebyshev G, Wang H, Nabity J, Engel J, Yu J, Wickham D, Van Devener B, Anderson S L, Williams S. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combustion and Flame, 2010, 157(3): 421–435CrossRefGoogle Scholar
  14. 14.
    Van Devener B, Anderson S L, Shimizu T,Wang H, Nabity J, Engel J, Yu J, Wickham D, Williams S. In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition. Journal of Physical Chemistry C, 2015, 80033(80138): 20632–20639Google Scholar
  15. 15.
    Guo Y, Yang Y, Fang W, Hu S. Resorcinarene-encapsulated Ni-B nano-amorphous alloys for quasi-homogeneous catalytic cracking of JP-10. Applied Catalysis A, General, 2014, 469(3): 213–220CrossRefGoogle Scholar
  16. 16.
    E X-T-F, Pan L, Wang F, Wang L, Zhang X, Zou J-J. Alnanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745CrossRefGoogle Scholar
  17. 17.
    Allen C, Mittal G, Sung C J, Toulson E, Lee T. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proceedings of the Combustion Institute, 2011, 33(2): 3367–3374CrossRefGoogle Scholar
  18. 18.
    Starik A M, Kuleshov P S, Sharipov A S, Titova N S. Kinetics of ignition and combustion in the Al-CH4-O2 System. Energy & Fuels, 2014, 28(10): 6579–6588CrossRefGoogle Scholar
  19. 19.
    Smirnov V V, Kostritsa S A, Kobtsev V D, Titova N S, Starik A M. Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles. Combustion and Flame, 2015, 162(10): 3554–3561CrossRefGoogle Scholar
  20. 20.
    Haber J A, Buhro W E. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. Journal of the American Chemical Society, 1998, 120 (42): 10847–10855CrossRefGoogle Scholar
  21. 21.
    Jouet R J, Warren A D, Rosenberg D M, Bellitto V J, Park K, Zachariah M R. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chemistry of Materials, 2005, 800(17): 2987–2996CrossRefGoogle Scholar
  22. 22.
    Jouet R J, Carney J R, Granholm R H, Sandusky H W, Warren A D. Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites. Materials Science and Technology, 2006, 22(4): 422–429CrossRefGoogle Scholar
  23. 23.
    Foley T J, Johnson C E, Higa K T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chemistry of Materials, 2005, 17(16): 4086–4091CrossRefGoogle Scholar
  24. 24.
    Fernando K A S, SmithMJ, Harruff B A, LewisWK, Guliants E A, Bunker C E. Sonochemically assisted thermal decomposition of alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. Journal of Physical Chemistry C, 2009, 113(2): 500–503CrossRefGoogle Scholar
  25. 25.
    Xu S, Liao Q. Shock tube study on auto-ignition delay of kerosene aerosol and its cracked mixture. Procedia Engineering, 2015, 99(1): 338–343CrossRefGoogle Scholar
  26. 26.
    Goulet P J G, Lennox R B. New insights into Brust-Schiffrin metal nanoparticle synthesis. Journal of the American Chemical Society, 2010, 132(28): 9582–9584CrossRefPubMedGoogle Scholar
  27. 27.
    Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103CrossRefPubMedGoogle Scholar
  28. 28.
    Lewis W K, Rosenberger A T, Gord J R, Crouse C A, Harruff B A, Shiral Fernando K A, Smith M J, Phelps D K, Spowart J E, Guliants E A, et al. Multispectroscopic (FTIR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. Journal of Physical Chemistry C, 2010, 114(14): 6377–6380CrossRefGoogle Scholar
  29. 29.
    Bournel F, Laffon C, Parent P, Tourillon G. Adsorption of acrylic acid on aluminium at 300 K: A multi-spectroscopic study. Surface Science, 1996, 352-354(95): 228–231CrossRefGoogle Scholar
  30. 30.
    Lee H M, Kim Y J. Preparation of size-controlled fine Al particles for application to rear electrode of Si solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3352–3358CrossRefGoogle Scholar
  31. 31.
    Hammerstroem D W, Burgers M A, Chung S W, Guliants E A, Bunker C E, Wentz K M, Hayes S E, Buckner S W, Jelliss P A. Aluminum nanoparticles capped by polymerization of alkylsubstituted epoxides: Ratio-dependent stability and particle size. Inorganic Chemistry, 2011, 50(11): 5054–5059CrossRefPubMedGoogle Scholar
  32. 32.
    Gan Y, Qiao L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combustion and Flame, 2011, 158(2): 354–368CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Yi H, Jia F, Li H, Peng C, Song S. A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water. Powder Technology, 2017, 306(7): 74–79CrossRefGoogle Scholar
  34. 34.
    Davidson D F, Horning D C, Herbon J T, Hanson R K. Shock tube measurements of JP-10 ignition. Proceedings of the Combustion Institute, 2000, 28(2): 1687–1692CrossRefGoogle Scholar
  35. 35.
    Li Y, Kalia R K, Nakano A, Vashishta P. Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations. Journal of Applied Physics, 2013, 114(13): 134312–134322CrossRefGoogle Scholar
  36. 36.
    Levitas V I. Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combustion and Flame, 2009, 156(2): 543–546CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiu-Tian-Feng E
    • 1
    • 2
  • Lei Zhang
    • 1
    • 2
  • Fang Wang
    • 1
    • 2
  • Xiangwen Zhang
    • 1
    • 2
  • Ji-Jun Zou
    • 1
    • 2
  1. 1.Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative and Innovative Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations