Skip to main content
Log in

Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion

  • Views & Comments
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global warming as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced from the use of fossil fuels in electricity generation and industrial processes. In this respect, post-combustion systems have received great attention as a possible near-term CO2 capture technology that can be retrofitted to existing power plants. This capture technology is, however, energy-intensive and results in large equipment sizes because of the large volumes of the flue gas to be treated. To cope with the demerits of other CCS technologies, the chemical looping combustion (CLC) process has been recently considered as a solution for CO2 separation. It is typically referred to as a technology without energy penalty. Indeed, in CLC the fuel and the combustion air are never mixed and the gases from the oxidation of the fuel (i.e., CO2 and H2O) leave the system as a separate stream and can be separated by condensation of H2O without any loss of energy. The key issue for the CLC process is to find a suitable oxygen carrier, which provides the fuel with the activated oxygen needed for combustion. The aim of this work is to explore the feasibility of using perovskites as oxygen carriers in CLC and to consider the possible advantages with respect to the scrubbing process with amines, a mature post-combustion technology for CO2 separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations Framework Convention on Climate Change. FOCUS: Mitigation-Action on mitigation: Reducing emissions and enhancing sinks. Bonn: UNFCCC, 2014

    Google Scholar 

  2. Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation: Application of chemicallooping combustion. Chemical Engineering Science, 2001, 56(10): 3101–3113

    Article  CAS  Google Scholar 

  3. Giuffrida A, Moioli S, Romano M C, Lozza G. Lignite-fired airblown IGCC systems with pre-combustion CO2 capture. International Journal of Energy Research, 2016, 40(6): 831–845

    Article  CAS  Google Scholar 

  4. Brandvoll Ø. Chemical looping combustion: Fuel conversion with inherent CO2 capture. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2005

    Google Scholar 

  5. Global Carbon Capture and Storage Institute. CO2 capture technologies: Post-combustion capture (PCC). 2012

    Google Scholar 

  6. Leung D Y, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 2014, 39: 426–443

    Article  CAS  Google Scholar 

  7. Elwell L C, Grant W S. Technology options for capturing CO2. Power, 2006, 150(8): 60–65

    CAS  Google Scholar 

  8. Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: Materials and process development. International Journal of Greenhouse Gas Control, 2007, 1(1): 11–18

    Article  CAS  Google Scholar 

  9. Wolf J, Anheden M, Yan J. Comparison of nickel-and iron-based oxygen carriers in chemical looping combustion for CO2 capture in power generation. Fuel, 2005, 84(7): 993–1006

    Article  CAS  Google Scholar 

  10. Hoffmann S, Bartlett M, Finkenrath M, Evulet A, Ursin T P. Performance and cost analysis of advanced gas turbine cycles with precombustion CO2 capture. Journal of Engineering for Gas Turbines and Power, 2009, 131(2): 021701

    Article  CAS  Google Scholar 

  11. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J M, Bouallou C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 2010, 30(1): 53–62

    Article  CAS  Google Scholar 

  12. Hossain MM, de Lasa H I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 2008, 63(18): 4433–4451

    Article  CAS  Google Scholar 

  13. Cansolv Technologies Inc. Sask Power Boundary Dam 3-Project Update & Some Lessons Learned. 2013

    Google Scholar 

  14. Ondrey G. CO2 gets grounded. Chemical Engineering (Albany, N. Y.), 2011, 107(3): 41–45

    Google Scholar 

  15. Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27

    Article  CAS  Google Scholar 

  16. Chakma A. CO2 capture processes—opportunities for improved energy efficiencies. Energy Conversion and Management, 1997, 38: S51–S56

    Google Scholar 

  17. Veawab A, Aroonwilas A, Tontiwachwuthikul P. CO2 absorption performance of aqueous alkanolamines in packed columns. Fuel Chemistry Division Preprints, 2002, 47(1): 49–50

    CAS  Google Scholar 

  18. Pellegrini L A, Moioli S, Gamba S. Energy saving in a CO2 capture plant by MEA scrubbing. Chemical Engineering Research & Design, 2011, 89(9): 1676–1683

    Article  CAS  Google Scholar 

  19. Aspen Hysys®. Bedford, MA: Aspen Technology, Inc., 2012

  20. Aspen Plus®. Bedford, MA: Aspen Technology, Inc., 2012

  21. Lewis W, Whitman W. Principles of gas absorption. Industrial & Engineering Chemistry, 1924, 16(12): 1215–1220

    Article  CAS  Google Scholar 

  22. King C J. Turbulent liquid phase mass transfer at free gas-liquid interface. Industrial & Engineering Chemistry Fundamentals, 1966, 5(1): 1–8

    Article  CAS  Google Scholar 

  23. Moioli S, Pellegrini L, Gamba S. Simulation of CO2 capture by MEA scrubbing with a rate-based model. Procedia Engineering, 2012, 42: 1651–1661

    Article  CAS  Google Scholar 

  24. Dugas R E. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine. Dissertation for the Doctoral Degree. Austin: University of Texas, 2006

    Google Scholar 

  25. Moioli S, Pellegrini L A, Gamba S, Li B. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution. Frontiers of Chemical Science and Engineering, 2014, 8(1): 123–131

    Article  CAS  Google Scholar 

  26. Nandy A, Loha C, Gu S, Sarkar P, Karmakar M K, Chatterjee P K. Present status and overview of chemical looping combustion technology. Renewable & Sustainable Energy Reviews, 2016, 59: 597–619

    Article  Google Scholar 

  27. Gilliland R E, Lewis W K. Production of pure carbon dioxide. US Patent, 2665972 A, 1954–01-12

    Google Scholar 

  28. Ritcher H J, Knoche K F. Reversibility of combustion process. Efficiency and costing, second law analysis of process. ACS Symposium Series, 1983, 235: 71–85

    Google Scholar 

  29. Ishida M, Zheng D, Akehata T. Evaluation of a chemical-loopingcombustion power-generation system by graphic exergy analysis. Energy, 1987, 12(2): 147–154

    Article  CAS  Google Scholar 

  30. Ishida M, Jin H. A novel combustor based on chemical-looping reactions and its reaction kinetics. Journal of Chemical Engineering of Japan, 1994, 27(3): 296–301

    Article  CAS  Google Scholar 

  31. Johansson E, Mattisson T, Lyngfelt A, Thunman H A. 300W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel, 2006, 85(10): 1428–1438

    Article  CAS  Google Scholar 

  32. Johansson E, Mattisson T, Lyngfelt A, Thunman H. Combustion of syngas and natural gas in a 300 W chemical-looping combustor. Chemical Engineering Research & Design, 2006, 84(9): 819–827

    Article  CAS  Google Scholar 

  33. Abad A, Mattisson T, Lyngfelt A, Rydén M. Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, 2006, 85(9): 1174–1185

    Article  CAS  Google Scholar 

  34. Mattisson T, Lyngfelt A, Cho P. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel, 2001, 80(13): 1953–1962

    Article  CAS  Google Scholar 

  35. Koga Y, Harrison L. Comprehensive Chemical Kinetics. Bamford C H, Tipper C F H, Compton R G, eds. Amsterdam: Elsevier, 1984

    Google Scholar 

  36. Richardson J, Turk B, Twigg M. Reduction of model steam reforming catalysts: Effect of oxide additives. Applied Catalysis A, General, 1996, 148(1): 97–112

    Article  CAS  Google Scholar 

  37. Richardson J, Scates R, Twigg M. X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts. Applied Catalysis A, General, 2004, 267(1): 35–46

    Article  CAS  Google Scholar 

  38. Utigard T, Wu M, Plascencia G, Marin T. Reduction kinetics of Goro nickel oxide using hydrogen. Chemical Engineering Science, 2005, 60(7): 2061–2068

    Article  CAS  Google Scholar 

  39. Sohn H, Szekely J. A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. Chemical Engineering Science, 1972, 27(4): 763–778

    Article  CAS  Google Scholar 

  40. Szekely J, Lin C, Sohn H. A structural model for gas-solid reactions with a moving boundary—V: An experimental study of the reduction of porous nickel-oxide pellets with hydrogen. Chemical Engineering Science, 1973, 28(11): 1975–1989

    Article  CAS  Google Scholar 

  41. Adanez J, Abad A, Garcia-Labiano F, Gayan P, Luis F. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 2012, 38(2): 215–282

    Article  CAS  Google Scholar 

  42. Hossain M M. Fluidized bed chemical-looping combustion: Development of a bimetallic oxygen carrier and kinetic modeling. 2007

    Google Scholar 

  43. Hossain M M, de Lasa H I. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC. AIChE Journal, 2007, 53(7): 1817–1829

    Article  CAS  Google Scholar 

  44. Readman J E, Olafsen A, Larring Y, La Blom R. La0.8Sr0.2Co0.2Fe0.8O3–δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study. Journal of Materials Chemistry, 2005, 15(19): 1931–1937

    Article  CAS  Google Scholar 

  45. Galinsky N, Sendi M, Bowers L, Li F. CaMn1–xBxO3–δ (B = Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy, 2016, 174: 80–87

    Article  CAS  Google Scholar 

  46. Taylor D D, Schreiber N J, Levitas B D, Xu W, Whitfield P S, Rodriguez E E. Oxygen storage properties of La1–xSrxFeO3–δ for chemical-looping reactions–an in-situ neutron and synchrotron Xray study. Chemistry of Materials, 2016, 28(11): 3951–3960

    Article  CAS  Google Scholar 

  47. Abad A, García-Labiano F, Gayán P, de Diego L, Adánez J. Redox kinetics of CaMg0.1Ti0.125Mn0.775O2.9–δ for chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU). Chemical Engineering Journal, 2015, 269: 67–81

    Article  CAS  Google Scholar 

  48. Naqvi R. Analysis of natural gas-fired power cycles with chemical looping combustion for CO2 capture. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2006

    Google Scholar 

  49. Linderholm C. CO2 Capture using chemical-looping combustion—operational experience with gaseous and solid fuels. Dissertation for the Doctoral Degree. Gothenburg, Sweden: Chalmers University of Technology, 2011

    Google Scholar 

  50. Rossetti I, Forni L. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis. Applied Catalysis B: Environmental, 2001, 33(4): 345–352

    Article  CAS  Google Scholar 

  51. Rossetti I, Biffi C, Forni L. Oxygen non-stoichiometry in perovskitic catalysts: Impact on activity for the flameless combustion of methane. Chemical Engineering Journal, 2010, 162(2): 768–775

    Article  CAS  Google Scholar 

  52. Rossetti I, Allieta M, Biffi C, Scavini M. Oxygen transport in nanostructured lanthanum manganites. Physical Chemistry Chemical Physics, 2013, 15(39): 16779–16787

    Article  CAS  PubMed  Google Scholar 

  53. King D A. Thermal desorption from metal surfaces: A review. Surface Science, 1975, 47(1): 384–402

    Article  CAS  Google Scholar 

  54. de Jong A M, Niemantsverdriet J W. Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surface Science, 1990, 233(3): 355–365

    Article  Google Scholar 

  55. Redhead P A. Thermal desorption of gases. Vacuum, 1962, 12(4): 203–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia De Guido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Guido, G., Compagnoni, M., Pellegrini, L.A. et al. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Front. Chem. Sci. Eng. 12, 315–325 (2018). https://doi.org/10.1007/s11705-017-1698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1698-z

Keywords

Navigation