Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion

  • Giorgia De Guido
  • Matteo Compagnoni
  • Laura A. Pellegrini
  • Ilenia Rossetti
Views & Comments


Carbon capture and storage (CCS) have acquired an increasing importance in the debate on global warming as a mean to decrease the environmental impact of energy conversion technologies, by capturing the CO2 produced from the use of fossil fuels in electricity generation and industrial processes. In this respect, post-combustion systems have received great attention as a possible near-term CO2 capture technology that can be retrofitted to existing power plants. This capture technology is, however, energy-intensive and results in large equipment sizes because of the large volumes of the flue gas to be treated. To cope with the demerits of other CCS technologies, the chemical looping combustion (CLC) process has been recently considered as a solution for CO2 separation. It is typically referred to as a technology without energy penalty. Indeed, in CLC the fuel and the combustion air are never mixed and the gases from the oxidation of the fuel (i.e., CO2 and H2O) leave the system as a separate stream and can be separated by condensation of H2O without any loss of energy. The key issue for the CLC process is to find a suitable oxygen carrier, which provides the fuel with the activated oxygen needed for combustion. The aim of this work is to explore the feasibility of using perovskites as oxygen carriers in CLC and to consider the possible advantages with respect to the scrubbing process with amines, a mature post-combustion technology for CO2 separation.


CO2 capture monoethanolamine chemical looping combustion oxygen carrier perovskites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    United Nations Framework Convention on Climate Change. FOCUS: Mitigation-Action on mitigation: Reducing emissions and enhancing sinks. Bonn: UNFCCC, 2014Google Scholar
  2. 2.
    Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation: Application of chemicallooping combustion. Chemical Engineering Science, 2001, 56(10): 3101–3113CrossRefGoogle Scholar
  3. 3.
    Giuffrida A, Moioli S, Romano M C, Lozza G. Lignite-fired airblown IGCC systems with pre-combustion CO2 capture. International Journal of Energy Research, 2016, 40(6): 831–845CrossRefGoogle Scholar
  4. 4.
    Brandvoll Ø. Chemical looping combustion: Fuel conversion with inherent CO2 capture. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2005Google Scholar
  5. 5.
    Global Carbon Capture and Storage Institute. CO2 capture technologies: Post-combustion capture (PCC). 2012Google Scholar
  6. 6.
    Leung D Y, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 2014, 39: 426–443CrossRefGoogle Scholar
  7. 7.
    Elwell L C, Grant W S. Technology options for capturing CO2. Power, 2006, 150(8): 60–65Google Scholar
  8. 8.
    Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: Materials and process development. International Journal of Greenhouse Gas Control, 2007, 1(1): 11–18CrossRefGoogle Scholar
  9. 9.
    Wolf J, Anheden M, Yan J. Comparison of nickel-and iron-based oxygen carriers in chemical looping combustion for CO2 capture in power generation. Fuel, 2005, 84(7): 993–1006CrossRefGoogle Scholar
  10. 10.
    Hoffmann S, Bartlett M, Finkenrath M, Evulet A, Ursin T P. Performance and cost analysis of advanced gas turbine cycles with precombustion CO2 capture. Journal of Engineering for Gas Turbines and Power, 2009, 131(2): 021701CrossRefGoogle Scholar
  11. 11.
    Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J M, Bouallou C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 2010, 30(1): 53–62CrossRefGoogle Scholar
  12. 12.
    Hossain MM, de Lasa H I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science, 2008, 63(18): 4433–4451CrossRefGoogle Scholar
  13. 13.
    Cansolv Technologies Inc. Sask Power Boundary Dam 3-Project Update & Some Lessons Learned. 2013Google Scholar
  14. 14.
    Ondrey G. CO2 gets grounded. Chemical Engineering (Albany, N. Y.), 2011, 107(3): 41–45Google Scholar
  15. 15.
    Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences (China), 2008, 20(1): 14–27CrossRefGoogle Scholar
  16. 16.
    Chakma A. CO2 capture processes—opportunities for improved energy efficiencies. Energy Conversion and Management, 1997, 38: S51–S56Google Scholar
  17. 17.
    Veawab A, Aroonwilas A, Tontiwachwuthikul P. CO2 absorption performance of aqueous alkanolamines in packed columns. Fuel Chemistry Division Preprints, 2002, 47(1): 49–50Google Scholar
  18. 18.
    Pellegrini L A, Moioli S, Gamba S. Energy saving in a CO2 capture plant by MEA scrubbing. Chemical Engineering Research & Design, 2011, 89(9): 1676–1683CrossRefGoogle Scholar
  19. 19.
    Aspen Hysys®. Bedford, MA: Aspen Technology, Inc., 2012Google Scholar
  20. 20.
    Aspen Plus®. Bedford, MA: Aspen Technology, Inc., 2012Google Scholar
  21. 21.
    Lewis W, Whitman W. Principles of gas absorption. Industrial & Engineering Chemistry, 1924, 16(12): 1215–1220CrossRefGoogle Scholar
  22. 22.
    King C J. Turbulent liquid phase mass transfer at free gas-liquid interface. Industrial & Engineering Chemistry Fundamentals, 1966, 5(1): 1–8CrossRefGoogle Scholar
  23. 23.
    Moioli S, Pellegrini L, Gamba S. Simulation of CO2 capture by MEA scrubbing with a rate-based model. Procedia Engineering, 2012, 42: 1651–1661CrossRefGoogle Scholar
  24. 24.
    Dugas R E. Pilot plant study of carbon dioxide capture by aqueous monoethanolamine. Dissertation for the Doctoral Degree. Austin: University of Texas, 2006Google Scholar
  25. 25.
    Moioli S, Pellegrini L A, Gamba S, Li B. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution. Frontiers of Chemical Science and Engineering, 2014, 8(1): 123–131CrossRefGoogle Scholar
  26. 26.
    Nandy A, Loha C, Gu S, Sarkar P, Karmakar M K, Chatterjee P K. Present status and overview of chemical looping combustion technology. Renewable & Sustainable Energy Reviews, 2016, 59: 597–619CrossRefGoogle Scholar
  27. 27.
    Gilliland R E, Lewis W K. Production of pure carbon dioxide. US Patent, 2665972 A, 1954–01-12Google Scholar
  28. 28.
    Ritcher H J, Knoche K F. Reversibility of combustion process. Efficiency and costing, second law analysis of process. ACS Symposium Series, 1983, 235: 71–85Google Scholar
  29. 29.
    Ishida M, Zheng D, Akehata T. Evaluation of a chemical-loopingcombustion power-generation system by graphic exergy analysis. Energy, 1987, 12(2): 147–154CrossRefGoogle Scholar
  30. 30.
    Ishida M, Jin H. A novel combustor based on chemical-looping reactions and its reaction kinetics. Journal of Chemical Engineering of Japan, 1994, 27(3): 296–301CrossRefGoogle Scholar
  31. 31.
    Johansson E, Mattisson T, Lyngfelt A, Thunman H A. 300W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel, 2006, 85(10): 1428–1438CrossRefGoogle Scholar
  32. 32.
    Johansson E, Mattisson T, Lyngfelt A, Thunman H. Combustion of syngas and natural gas in a 300 W chemical-looping combustor. Chemical Engineering Research & Design, 2006, 84(9): 819–827CrossRefGoogle Scholar
  33. 33.
    Abad A, Mattisson T, Lyngfelt A, Rydén M. Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier. Fuel, 2006, 85(9): 1174–1185CrossRefGoogle Scholar
  34. 34.
    Mattisson T, Lyngfelt A, Cho P. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel, 2001, 80(13): 1953–1962CrossRefGoogle Scholar
  35. 35.
    Koga Y, Harrison L. Comprehensive Chemical Kinetics. Bamford C H, Tipper C F H, Compton R G, eds. Amsterdam: Elsevier, 1984Google Scholar
  36. 36.
    Richardson J, Turk B, Twigg M. Reduction of model steam reforming catalysts: Effect of oxide additives. Applied Catalysis A, General, 1996, 148(1): 97–112CrossRefGoogle Scholar
  37. 37.
    Richardson J, Scates R, Twigg M. X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts. Applied Catalysis A, General, 2004, 267(1): 35–46CrossRefGoogle Scholar
  38. 38.
    Utigard T, Wu M, Plascencia G, Marin T. Reduction kinetics of Goro nickel oxide using hydrogen. Chemical Engineering Science, 2005, 60(7): 2061–2068CrossRefGoogle Scholar
  39. 39.
    Sohn H, Szekely J. A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. Chemical Engineering Science, 1972, 27(4): 763–778CrossRefGoogle Scholar
  40. 40.
    Szekely J, Lin C, Sohn H. A structural model for gas-solid reactions with a moving boundary—V: An experimental study of the reduction of porous nickel-oxide pellets with hydrogen. Chemical Engineering Science, 1973, 28(11): 1975–1989CrossRefGoogle Scholar
  41. 41.
    Adanez J, Abad A, Garcia-Labiano F, Gayan P, Luis F. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 2012, 38(2): 215–282CrossRefGoogle Scholar
  42. 42.
    Hossain M M. Fluidized bed chemical-looping combustion: Development of a bimetallic oxygen carrier and kinetic modeling. 2007Google Scholar
  43. 43.
    Hossain M M, de Lasa H I. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC. AIChE Journal, 2007, 53(7): 1817–1829CrossRefGoogle Scholar
  44. 44.
    Readman J E, Olafsen A, Larring Y, La Blom R. La0.8Sr0.2Co0.2Fe0.8O3–δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study. Journal of Materials Chemistry, 2005, 15(19): 1931–1937CrossRefGoogle Scholar
  45. 45.
    Galinsky N, Sendi M, Bowers L, Li F. CaMn1–xBxO3–δ (B = Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy, 2016, 174: 80–87CrossRefGoogle Scholar
  46. 46.
    Taylor D D, Schreiber N J, Levitas B D, Xu W, Whitfield P S, Rodriguez E E. Oxygen storage properties of La1–xSrxFeO3–δ for chemical-looping reactions–an in-situ neutron and synchrotron Xray study. Chemistry of Materials, 2016, 28(11): 3951–3960CrossRefGoogle Scholar
  47. 47.
    Abad A, García-Labiano F, Gayán P, de Diego L, Adánez J. Redox kinetics of CaMg0.1Ti0.125Mn0.775O2.9–δ for chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU). Chemical Engineering Journal, 2015, 269: 67–81CrossRefGoogle Scholar
  48. 48.
    Naqvi R. Analysis of natural gas-fired power cycles with chemical looping combustion for CO2 capture. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2006Google Scholar
  49. 49.
    Linderholm C. CO2 Capture using chemical-looping combustion—operational experience with gaseous and solid fuels. Dissertation for the Doctoral Degree. Gothenburg, Sweden: Chalmers University of Technology, 2011Google Scholar
  50. 50.
    Rossetti I, Forni L. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis. Applied Catalysis B: Environmental, 2001, 33(4): 345–352CrossRefGoogle Scholar
  51. 51.
    Rossetti I, Biffi C, Forni L. Oxygen non-stoichiometry in perovskitic catalysts: Impact on activity for the flameless combustion of methane. Chemical Engineering Journal, 2010, 162(2): 768–775CrossRefGoogle Scholar
  52. 52.
    Rossetti I, Allieta M, Biffi C, Scavini M. Oxygen transport in nanostructured lanthanum manganites. Physical Chemistry Chemical Physics, 2013, 15(39): 16779–16787CrossRefGoogle Scholar
  53. 53.
    King D A. Thermal desorption from metal surfaces: A review. Surface Science, 1975, 47(1): 384–402CrossRefGoogle Scholar
  54. 54.
    de Jong A M, Niemantsverdriet J W. Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surface Science, 1990, 233(3): 355–365CrossRefGoogle Scholar
  55. 55.
    Redhead P A. Thermal desorption of gases. Vacuum, 1962, 12(4): 203–211CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Giorgia De Guido
    • 1
  • Matteo Compagnoni
    • 2
  • Laura A. Pellegrini
    • 1
  • Ilenia Rossetti
    • 2
  1. 1.Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanItaly
  2. 2.Department of ChemistryUniversità degli Studi di Milano, INSTM Unit Milano-Università and CNR-ISTMMilanItaly

Personalised recommendations