Skip to main content

Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate


Most commercial NF membranes are negatively charged at the pH range of a typical feed solution. In order to enhance the removal of cations (such as Mg2+ or Ca2+), we utilized polyethyleneimine (PEI) and trimesoyl chloride (TMC) to perform interfacial polymerization reaction on a polydopamine coated hydrolyzed polyacrylonitrile substrate to obtain a positively charged nanofiltration membrane. Effects of polydopamine coating time, PEI concentration, TMC reaction time and concentration on the membrane physicochemical properties and separation performance were systematically investigated using scanning electron microscopy, streaming potential and water contact angle measurements. The optimal NF membrane showed high rejection for divalent ions (93.6±2.6% for MgSO4, 92.4±1.3% for MgCl2, and 90.4±2.1% for Na2SO4), accompanied with NaCl rejection of 27.8±2.5% with a permeation flux of 17.2±2.8 L∙m–2∙h–1 at an applied pressure of 8 bar (salt concentrations were all 1000 mg∙L–1). The synthesized membranes showed promising potentials for the applications of water softening.

This is a preview of subscription content, access via your institution.


  1. 1.

    Hilal N, Al-Zoubi H, Darwish N A, Mohamma A W, Abu Arabi M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308

    Article  CAS  Google Scholar 

  2. 2.

    Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254

    Article  CAS  Google Scholar 

  3. 3.

    Ma X H, Yang Z, Yao Z K, Xu Z L, Tang C Y. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 2017, 525: 269–276

    Article  CAS  Google Scholar 

  4. 4.

    Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Review Materials, 2016, 1(5): 16018

    Article  CAS  Google Scholar 

  5. 5.

    Li D, Wang H. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010, 20(22): 4551–4566

    Article  CAS  Google Scholar 

  6. 6.

    Luo J, Wan Y. Effects of pH and salt on nanofiltration—a critical review. Journal of Membrane Science, 2013, 438: 18–28

    Article  CAS  Google Scholar 

  7. 7.

    Lau WJ, Ismail A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 2009, 245(1–3): 321–348

    Article  CAS  Google Scholar 

  8. 8.

    Liu T Y, Liu Z H, Zhang R X, Wang Y, Van der Bruggen B, Wang X L. Fabrication of a thin film nanocomposite hollow fiber nanofiltration membrane for wastewater treatment. Journal of Membrane Science, 2015, 488: 92–102

    Article  CAS  Google Scholar 

  9. 9.

    Lin J, Tang C Y, Ye W, Sun S P, Hamdan S H, Volodin A, Van Haesendonck C, Sotto A, Luis P, Van der Bruggen B. Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. Journal of Membrane Science, 2015, 493: 690–702

    Article  CAS  Google Scholar 

  10. 10.

    Dong L X, Huang X C, Wang Z, Yang Z, Wang X M, Tang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239

    Article  CAS  Google Scholar 

  11. 11.

    Guo H, Deng Y, Yao Z K, Yang Z, Wang J Q, Lin C, Zhang T, Zhu B K, Tang C Y. A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications. Water Research, 2017, 121: 197–203

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Al-Amoudi A S, Farooque A M. Performance restoration and autopsy of NF membranes used in seawater pretreatment. Desalination, 2005, 178(1–3): 261–271

    Article  CAS  Google Scholar 

  13. 13.

    Song Y, Su B, Gao X, Gao C. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system. Desalination, 2012, 296: 30–36

    Article  CAS  Google Scholar 

  14. 14.

    Tang C Y, Zhao Y, Wang R, Hélix-Nielsen C, Fane A. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 2013, 308: 34–40

    Article  CAS  Google Scholar 

  15. 15.

    Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 2015, 367: 37–48

    Article  CAS  Google Scholar 

  16. 16.

    Fane A G, Tang C, Wang R. Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise Water Science: Elsevier Science, 2011, 301–335

    Google Scholar 

  17. 17.

    Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 2011, 370(1): 1–22

    Article  CAS  Google Scholar 

  18. 18.

    Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D. Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 1998, 14(1): 155–162

    Article  CAS  Google Scholar 

  19. 19.

    Li Y, Su Y, Li J, Zhao X, Zhang R, Fan X, Zhu J, Ma Y, Liu Y, Jiang Z. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine. Journal of Membrane Science, 2015, 476: 10–19

    Article  CAS  Google Scholar 

  20. 20.

    Deng H, Xu Y, Chen Q, Wei X, Zhu B. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. Journal of Membrane Science, 2011, 366(1–2): 363–372

    Article  CAS  Google Scholar 

  21. 21.

    Bernstein R, Anton E, Ulbricht M. UV-photo graft functionalization of polyethersulfone membrane with strong polyelectrolyte hydrogel and its application for nanofiltration. ACS Applied Materials & Interfaces, 2012, 4(7): 3438–3446

    Article  CAS  Google Scholar 

  22. 22.

    Wu D, Huang Y, Yu S, Lawless D, Feng X. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. Journal of Membrane Science, 2014, 472: 141–153

    Article  CAS  Google Scholar 

  23. 23.

    Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z. A novel positively charged composite nanofiltration membrane prepared by bioinspired adhesion of polydopamine and surface grafting of poly (ethylene imine). Journal of Membrane Science, 2014, 470: 9–17

    Article  CAS  Google Scholar 

  24. 24.

    Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. Journal of Membrane Science, 2015, 476: 50–58

    Article  CAS  Google Scholar 

  25. 25.

    Qi S, Qiu C Q, Tang C Y. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Environmental Science & Technology, 2011, 45(12): 5201–5208

    Article  CAS  Google Scholar 

  26. 26.

    Yang Z, Wu Y, Wang J, Cao B, Tang C Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environmental Science & Technology, 2016, 50(17): 9543–9550

    Article  CAS  Google Scholar 

  27. 27.

    Yang Z, Yin J, Deng B. Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. Aims Press Envrionmental Science, 2016, 3(2): 185–198

    Article  CAS  Google Scholar 

  28. 28.

    Li M, Xu J, Chang C Y, Feng C, Zhang L, Tang Y, Gao C. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. Journal of Membrane Science, 2014, 459: 62–71

    Article  CAS  Google Scholar 

  29. 29.

    Fang W, Shi L, Wang R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. Journal of Membrane Science, 2013, 430: 129–139

    Article  CAS  Google Scholar 

  30. 30.

    Zhang G, Yan H, Ji S, Liu Z. Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane. Journal of Membrane Science, 2007, 292(1): 1–8

    Article  CAS  Google Scholar 

  31. 31.

    Guo H, Deng Y, Tao Z, Yao Z, Wang J, Lin C, Zhang T, Zhu B, Tang C Y. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environmental Science & Technology Letters, 2016, 3(9): 332–338

    Article  CAS  Google Scholar 

  32. 32.

    Arena J T, McCloskey B, Freeman B D, McCutcheon J R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. Journal of Membrane Science, 2011, 375 (1): 55–62

    Article  CAS  Google Scholar 

  33. 33.

    Li X L, Zhu L P, Jiang J H, Yi Z, Zhu B K, Xu Y Y. Hydrophilic nanofiltration membranes with self-polymerized and stronglyadhered polydopamine as separating layer. Chinese Journal of Polymer Science, 2012, 30(2): 152–163

    Article  CAS  Google Scholar 

  34. 34.

    Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, Jiang Z. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 2014, 465: 41–48

    Article  CAS  Google Scholar 

  35. 35.

    Wei J, Liu X, Qiu C, Wang R, Tang C Y. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. Journal of Membrane Science, 2011, 381(1): 110–117

    Article  CAS  Google Scholar 

  36. 36.

    Freger V. Kinetics of film formation by interfacial polycondensation. Langmuir, 2005, 21(5): 1884–1894

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions: Effect of membrane conditioning. Journal of Membrane Science, 2002, 198(1): 75–85

    Article  CAS  Google Scholar 

  38. 38.

    Shukla R, Cheryan M. Stability and performance of ultrafiltration membranes in aqueous ethanol. Separation and Purification Technology, 2003, 38(7): 1533–1547

    CAS  Google Scholar 

  39. 39.

    Lee H, Dellatore S M, Miller W M, Messersmith P B. Musselinspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y. Musselinspired chemistry and michael addition reaction for efficient oil/ water separation. ACS Applied Materials & Interfaces, 2013, 5(10): 4438–4442

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge the General Research Fund (Project number 17207514) by the Research Grants Council of Hong Kong. We also thank the partial support received from Strategic Research Theme (Clean Energy) and the Seed Grant for Basic Research (104003453) of the University of Hong Kong.

Author information



Corresponding author

Correspondence to Chuyang Y. Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Huang, X., Wang, J. et al. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate. Front. Chem. Sci. Eng. 12, 273–282 (2018).

Download citation


  • nanofiltration
  • polyethyleneimine
  • trimesoyl chloride
  • polydopamine
  • positively charged rejection layer